7. Кот Шредингера. Квантовая природа времени

Галина Емельянцева
В 1935 году после опубликования статьи Эйнштейна-Подольского-Розена о неполноте квантовой механики Шредингер направил Эйнштейну письмо со словами поддержки и в продолжение темы предложил мысленный эксперимент, который наглядно демонстрировал суть проблемы. Эксперимент получил широкую известность как парадокс «кота Шредингера».

Кот помещался в закрытую коробку. За перегородкой находится «дьявольская машина»: счётчик Гейгера, крупинка радиоактивного вещества и синильная кислота. Когда атом вещества распадется, вылетит элементарная частица, счетчик Гейгера сработает и приведет в действие молоточек. Он разобьет колбу с синильной кислотой и кот тут же отравится. Когда вылетит частица никто не знает, но наблюдателю задается вопрос: кот жив или мертв? Так как распад атома – исключительно квантовое событие, то и кота придется описывать как квантовый объект. До тех пор, пока наблюдатель не открыл коробку, кот не жив и не мертв. Он существует в виде сочетания различных квантовых состояний или суммы двух волн. Одна из этих волн описывает мертвого кота, другая — живого. Вероятность 50%, что атом не распался и кот жив, такая же вероятность 50%, что атом распался и кот мертв. Живой и мертвый кот как бы смешаны и равномерно размазаны по объему коробки.

Если следовать копенгагенской интерпретации, единственный способ определить, жив кот или мертв - открыть короб и произвести наблюдение. В этот момент волновая функция схлопнется в мертвого или живого кота. Наблюдение (для которого требуется сознание) будет определять его существование.

По Шредингеру суть эксперимента состояла в том, что неопределённость на квантовом уровне должна привести к неопределённости, размытости в макроскопическом масштабе («смесь» живого и мёртвого кота). Это не соответствует требованию определённости состояний макрообъектов независимо от их наблюдения и, следовательно, не позволяет принять «модель размытости» в качестве реальной картины. Эйнштейну эксперимент понравился, хотя он рассматривал его суть несколько по-иному – как возможность статистического описания эксперимента и статистического опровержения копенгагенской интерпретации.

Аргументы Эйнштейна и Шредингера не могли остановить дальнейшее успешное развитие квантовой физики, наоборот, помогли работе над прояснением некоторых принципиально важных её аспектов. Старая копенгагенская интерпретация теории перестала пользоваться популярностью – сегодня она уступила место многомировой интерпретации. В новой трактовке вселенная расщепляется надвое, где в одной вселенной кот жив, а в другой – мертв. Или на множество вселенных, где кот существует в самых различных состояниях.

Научная и философская проблема физической реальности так и осталась нерешенной. Кот Шредингера продолжает гулять сам по себе, где и как ему вздумается. Сегодня наука, достигнув фантастических высот, вновь признает, что на трудном пути познания природы ей, как и некогда великому физику, не хватает какого-то неизвестного, но очень важного параметра, позволяющего достичь единой и целостной картины мира. И все больше исследователей, подозревая, что Эйнштейн, возможно, был прав, обращаются к теме единой теории поля. Ученые продолжают поиски, предполагая, что могут существовать пока не обнаруженные элементарные частицы, по своим свойствам не совсем похожие на другие частицы Стандартной модели. Эти частицы должны дать возможность найти концы нитей в клубке квантовой запутанности. Поиски недостающих частей системы ведутся в космосе и в ускорителях.

Из элементарных частиц состоит все известное нам вещество, вся таблица Менделеева. Атом состоит из облака электронов, летающих вокруг крохотной плотной сердцевины, где сосредоточена почти вся масса – ядра, состоящего из протонов и нейтронов. Ядро примерно в 100 тысяч раз меньше самого атома, т.е. в атоме больше пустоты, чем твердости. Если бы ядро было размером с горошину, то атом был бы по размеру с футбольный стадион. А если из атомов тела человека убрать всё свободное пространство, то человек мог бы уместиться в крошечной пылинке.

Однако оказывается, что могут существовать и другие атомы, экзотические. В атоме, называемом мюонный атом, на место одного из электронов встраивается отрицательный мюон, характеристики которого совпадают с характеристиками электрона во всем, кроме массы. Из-за того, что мюон тяжелее своего собрата-электрона в 207 раз, мюонная орбиталь меньше электронной тоже в 207 раз, соответственно, размер мюонного атома получается в те же 207 раз меньше обычного. Но ядро-то остается прежним. Поэтому для мюона вероятность оказаться внутри ядра возрастает в 207^(3), то есть почти в девять миллионов раз больше по сравнению с электроном. Для тяжёлых атомов радиус орбиты мюона становится меньше радиуса ядра. Облако находится уже не во вне, а начинает струиться где-то в недрах ядра. Такое строение атома, похожее на коробочку с сюрпризом, сильно влияет на его свойства.