6. Квантовые фокусы. Квант природа времен

Галина Емельянцева
Понятию «квант» (от лат. Quantum - «сколько») физика обязана Максу Планку, который в 1900 г. предложил гипотезу о том, что энергия, излучаемая нагретыми телами, не является непрерывным потоком, как в теории Ньютона, а распространяется дискретными пакетами, названными им квантами. Он рассчитал размер этих пакетов и выразил его через константу - постоянную Планка h, которая равна 6,6х10^(-34)Дж·с и иногда называется «квантом действия». В силу своей микроскопической величины эта фундаментальная константа проявляет себя только в мире частиц, не оказывая какого-либо значимого влияния на макрообъекты.

Пока еще малоизвестный Альберт Эйнштейн, занимавшийся в это время специальной теорией относительности, применил квантовую теорию Планка к свету и показал, что свет — это не просто волна, одновременно это еще и частицы, кванты энергии. Позднее кванту света было присвоено имя - фотон. Свет состоит из фотонов, которые создают вокруг себя электромагнитное поле, являющееся волной.

Физиков удивила странная двойственность света, но настоящее потрясение они испытали, когда выяснилось, что электрон, всегда считавшийся твердой частицей, тоже ведет себя как волна. В экспериментах пропущенный через две щели пучок электронов рисовал не две вертикальных полосы, что логично было бы для частиц, а сразу группу полос, что было типичной картиной при интерференции волн. Даже если запускали электроны по одному, картина не менялась – словно один электрон проходил через две щели сразу. Мало того, оказалось, что электроны способны пропадать и вновь появляться в другом месте, что было совершенно невозможно представить! Если электрон обладает волновыми свойствами, тогда что возмущает среду, в которой существует эта волна? Что колеблется? А если электрон частица, то как он может в одно и то же время находиться в двух местах?

Ответ дал Макс Борн в 1926 году, заявив, что колеблется вероятность нахождения электрона в данной точке. Невозможно точно и наверняка определить, где находится электрон. Единственное, что мы можем знать, — это вероятность его нахождения. Идею закрепил Вернер Гейзенберг, сформулировав свой знаменитый принцип неопределенности, легший в фундамент квантовой теории. Принцип гласит, что одновременно знать точно импульс (произведение массы на скорость) и местоположение электрона невозможно. Математически он выражается соотношением неопределенности по формуле, где погрешность измерения координаты, умноженная на погрешность измерения импульса, всегда должна быть больше или равна постоянной Планка. Это накладывает ограничение: если мы точно определяем месторасположение частицы, то не можем точно знать ее скорость. И наоборот: определив скорость, мы получаем неопределенность с координатами.

Принцип неопределенности аналогичным образом связывает не только координаты и скорость, но и другие пары взаимно увязанных характеристик частиц. Так, невозможно безошибочно измерить энергию квантовой системы и определить момент времени, в который она обладает этой энергией. Неопределенность является следствием корпускулярно-волнового дуализма. Элементарная частица - это частица, но вероятность нахождения этой частицы в любой заданной точке задается волновой функцией. Пока мы измеряем одну величину, другая в это время успевает как бы умчаться от нас вдаль, стать размытой, неопределенной, выдавая большие погрешности в расчетах.

В 1927 году Нильс Бор и Вернер Гейзенберг сформулировали Копенгагенскую интерпретацию, согласно которой квантовая механика описывает не микрообъекты сами по себе, а их свойства, проявляющиеся на макроуровне. Макроуровень, или окружающий реальный мир создается классическими измерительными приборами в процессе акта наблюдения. Именно акт измерения вызывает мгновенное схлопывание, «коллапс волновой функции».

Копенгагенскую интерпретацию часто сравнивают с философией епископа Беркли, который задавал вопрос: если в лесу падает дерево и вокруг нет никого, кто мог бы это услышать, то производит ли его падение звук? Копенгагенская интерпретация квантовой теории не отвечает на этот вопрос однозначным «да» или однозначным «нет». Ее ответ куда более неприятен, чем сам вопрос: если рядом с лесным деревом никого нет, то это дерево существует как сумма множества различных состояний. Оно может не только расти или падать, но и существовать, например, в виде только что проклюнувшегося росточка, в виде обугленного под ударом молнии столба, в виде поленницы дров или листа фанеры и т.д. Только когда вы смотрите на это дерево, его волновая функция чудесным образом схлопывается в обычное дерево.

Твердыни, которые еще совсем недавно казались незыблемыми, прямо на глазах превращались в зыбучие пески. Такое понятное и вполне предсказуемое будущее предсказать уже было нельзя – можно говорить только о вероятности того или другого течения событий. На этом поле вероятностей возникал пусть небольшой, но все же шанс для невероятного – для какой-нибудь немыслимой чертовщины, противоречащей здравому уму. Квантовая «ересь» взорвала мир физики и расколола его на два лагеря. Вместе с ним вдребезги рушилась вообще вся прежняя мировоззренческая вселенная, требуя философского переосмысления физической реальности. Новый фундаментальный физический принцип, принцип неопределенности, разрушал фундамент детерминизма. Больше не существует ни однозначной определенности в природе, ни высшего промысла – миром правит случайность. 

Амбассадорами лагеря сторонников квантовой теории были Бор и Гейзенберг, а противниками оказались Эйнштейн и Шрёдингер, стоявшие у ее истоков. Признавая несомненные успехи новой теории и даже временами искренне восторгаясь ими, отцы-основатели открыто недолюбливали свое дитя за его непредсказуемый характер. Шрёдингеру, автору волновых уравнений, применяемых для решения квантовых задач, она не нравилось настолько, что он даже сожалел о своей причастности к ней. В статье 1935 года он отмечает, что квантовая механика «пока всего лишь удобный трюк, который, однако, приобрёл… чрезвычайно большое влияние на наши фундаментальные взгляды на природу» [1]. Вечным оппонентом квантовой теории оставался Эйнштейн. В пылу жарких научных споров он не раз восклицал: «Бог не играет в кости со Вселенной!». Великий ученый не отвергал теорию полностью, но не мог принять ее в качестве окончательного варианта для фундамента физики. Эйнштейну не хватало в ней единства, целостности, полноты картины мира, какого-то скрытого, но очень важного параметра.