Многоликий тензор

Иван Деревянко
Вообще говоря, в математике считается, что «тензор (от лат. tensus, «напряженный») — объект линейной алгебры, линейно преобразующий элементы одного линейного пространства в элементы другого». Или «тензор – это математический объект, который как объект не зависит от смены системы координат, но его компоненты при смене системы координат преобразуются по определенному математическому закону»

Очевидно, и в том, и в другом определениях считается, что частными случаями тензоров являются скаляры, векторы, билинейные формы и т.п. Вряд ли составляющие тензора, которыми являются скаляр, комплекс и вектор, можно назвать частными случаями, поскольку они являются его частью.

Здесь, очевидно, следует уточнить природу математических объектов. С одной стороны, меньшие образовывают большие, а большие распадаются на меньшие. Видимо, это не одно и то же. Два скаляра образуют комплекс, три комплекса – вектор, четыре вектора – тензор. А распадаются они в обратной последовательности. Поэтому, говорить о том, что меньшие являются частным случаем больших, вряд ли обоснованно.

В этом случае следует четко различать природу полей. Если монады, диады, триады и тетрады единичные элементы однородных множеств, то это скалярные поля, а если поля неоднородны и сами имеют форму таких образований, то они называются либо комплексными, либо векторными, либо тензорными полями и могут содержать от двух до десяти скалярных полей по числу их элементов.

Так, что же является отличительной особенностью тензора? Неизменяемость объекта при смене координат? Да. Инвариант? Да. Что же еще? Попробуем начать с самого простого.

У человека существует оптимальное соотношение энергетических параметров. Отклонение любого из них от оптимума вызывает, мягко говоря, дискомфорт. Такие отклонения вызваны тем, что окружающая энергетическая среда не всегда соответствует оптимуму человека. Поэтому человек вынужден вырабатывать недостающее количество соответствующих видов энергии. Для ее выработки расходуется определенное количество ресурсов, а их запасы ограничены. Это инвариант? В какой-то мере, да, но это лучше назвать константой.

Измеряются несколько параметров какого-то ресурса. Что нужно сделать, чтобы значения параметров были сопоставимы? Надо выбрать одинаковую шкалу измерения каждого параметра по его предельному значению и приравнять их единице. Тогда измеряемые значения параметров будут сопоставимы в относительных единицах. Предельные значения параметров не изменяются независимо от того, какой параметр измеряется. Это инвариант? В принципе, да, но это все-таки пределы. Они обеспечивают сопоставимость параметров.

Общеизвестный инвариант – это вектор, который не изменяется при перемене системы координат. Однако существует еще одна постоянная величина, на которую мало кто обращает внимание. Это – подобие объектов, когда изменяются размеры, но происходящие процессы остаются неизменными. Одна из схем подобия показана на рисунке.

Речь идет прежде всего о видах энергии, где при преобразованиях энергоносители изменяются в размерах, но процессы подобны. Такое же подобие имеет место среди галактик, атомов и биоорганизмов, а также в процессе сознательной деятельности. Следовательно, в тензорах существуют в качестве постоянных величин константы, пределы, инварианты и параметры подобия.

Если в четырехмерных координатах отражены какие-нибудь параметры, то их четыре взаимодействия будут отражены в виде параллелограммного додекаэдра. Если же эти параметры еще и равны, то додекаэдр будет ромбическим. В природе такие фигуры встречаются довольно часто. Например, в кристаллографии.

Параметры на осях координат означают свободное состояние объекта. Взаимодействие двух параметров, а, следовательно, двух объектов, представляют грани додекаэдра, построенные на двух координатах. Взаимодействие трех параметров представлены параллелепипедами, построенными на трех координатных осях, а четыре взаимодействующие параметры представляет вся фигура додекаэдра.

Взаимодействия в форме додекаэдров наиболее четко проявляются на атомарном уровне. Атомы существуют в свободном состоянии и во взаимодействии с другими в виде молекул. Наиболее часто возникают парные взаимодействия между одноименными орбитами двух орбитальных уровней. Электрон одного атома, попадая на свободную одноименную орбиту другого атома, образует устойчивую прочную связь. Такие связи могут образовываться на каждой из трех орбитальных плоскостях. А поскольку каждая орбитальная плоскость имеет четыре орбиты, то возможны четыре взаимодействия на каждой плоскости.

Парные взаимодействия образуются по схеме косоугольных матриц второго порядка. Тройные взаимодействия следует рассматривать как косоугольные матрицы третьего порядка, а четверные – как косоугольную матрицу четвертого порядка. С помощью этих матриц можно создавать новые материалы. Они показывают, какие химические элементы могут взаимодействовать друг с другом, создавая новые вещества, а какие нет.

Таким образом, взаимодействия атомов осуществляются по модели ромбического (параллелограммного) додекаэдра. Очевидно, по этой схеме могут взаимодействовать и космические системы, но их взаимодействия не могут быть такими плотными вследствие их гигантских размеров.

В математике известны, кроме эвклидова пространства, пространства Римана, Лобачевского и другие, в которых строятся различные сложные фигуры, например, псевдосферы. В четырехмерном пространстве можно без проблем построить все эти фигуры.

Если в трехмерном пространстве можно построить сферу, то в четырехмерном ее можно искривлять, как угодно. И не понадобится четырехмерный пространственно-временной континуум, в котором четвертую координату вынуждены были представлять, как произведение скорости на время, чтобы получить ту же четырехмерную пространственную систему координат. А иначе нельзя было получить никакого искривления ни пространства, ни, тем более, времени.

Если же пространственно-временной континуум поделить на время, то получится обычная четырехмерная система скоростей. Правда, непонятно, как экзотическая скорость света «уживется» с другими скоростями. Но это уже фантазии релятивистов.

Для характеристики тела требуется определенная система параметров: размер, площадь поперечного сечения объем и форма. Форма описывается уравнением четвертой степени. Таким же уравнением описывается пространственная траектория движения тела по орбите неправильной формы.