Ломоносов, Лобачевский, Менделеев

Иван Лупандин
Если следовать логике предыдущей лекции, то после Бошковича надо рассказывать о неевклидовой геометрии. Как известно, неевклидова геометрия была создана Н.И. Лобачевским, и этот неоспоримый факт переносит нас из Европы в Россию, страну, до этого сравнительно малоизвестную в научном мире. Впрочем уже в XVIII веке заслугами Петра I и Екатерины II в России были созданы благоприятные условия для развития науки. В Россию, оказывавшую покровительство ученым, были приглашены такие светила европейской науки, как Эйлер и Даниил Бернулли; почетным членом Санкт-Петербургской академии наук был избран И.Р. Бошкович. Из русских ученых XVIII века наиболее известен М.В. Ломоносов, ученик Христиана Вольфа. Ломоносов много сделал для организации русской науки, поэтому косвенно причастен к дальнейшим ее успехам, связанным с именами Лобачевского и Менделеева.
Ломоносов, учившийся в Германии, унаследовал новоевропейскую ментальность и негативное отношение к аристотелизму и схоластике. Таким образом, Россия, не пройдя этапа схоластической науки, сразу окунулась в водоворот идей Нового времени, что имело и свои отрицательные последствия, т.к. схоластика дисциплинировала ум и не давала угаснуть последним искрам христианства в мире ученых. Вот что пишет Ломоносов о европейской интеллектуальной истории:
"Варварские веки, в которые купно с общим покоем рода человеческого и науки нарушились и почти совсем уничтожены были, уже прежде двухсот лет окончились" (М.В. Ломоносов. Избранные философские произведения. М., 1950, сс. 124-125)
Ломоносов пишет эти строки в 1746 году, т.е. он считает 1546 год окончанием варварских веков. 1540-1545 гг. действительно можно с хорошей точностью считать окончанием эпохи средневековья, ибо в эти годы произошли три важных события, переменивших облик Европы: в 1540 году был основан орден иезуитов, в 1543 году вышла в свет книга Коперника "Об обращениях небесных сфер" и в 1545 году был созван Тридентский собор. Но, как нам удалось показать в наших лекциях, европейская наука еще ранее середины XVI века сделала громадные успехи и ясно, что эти успехи не могли иметь места без предварительной работы, осуществлявшейся в европейских университетах начиная с XIII века. Однако продолжим цитату из статьи Ломоносова:
"Одному Аристотелю последовали и его мнения за неложные почитали[...]. Славный и первый из новых философов Картезий осмелился Аристотелеву философию опровергнуть и учить по своему мнению и вымыслу[...]. Едва понятно, коль великое приращение в астрономии неусыпными наблюдениями и глубокомысленными рассуждениями Кеплер, Галилей, Гугений, де ла Гир и великий Невтон в краткое время учинили" (Там же, с. 125).
Ломоносов был осведомлен о крупнейших открытиях XVII века и делал все возможное для их популяризации в России. Так, о вакуумном насосе, изобретенном немецким ученым Отто фон Герике, и о его опытах Ломоносов пишет следующее:
"Сию машину изобрел Оттон де Герикк [...] сей[...] представил совсем нечаянные опыты, которые сперва описал Каспар Шотт, езуита вирцбургский в 1657 году в прибавлении к Художеству механическому и гидравлико-пневматическому, а потом и сам автор в 1672 году под титулом Магдебургских опытов, в безвоздушном пространстве учиненных, на свет выдал" (М.В. Ломоносов. Полное собрание сочинений. Т. 1, М., 1950, с. 437). Осведомлен был Ломоносов и об опытах Торричелли и Паскаля: "А ежели кто, равно как Пасхалий и Штурм, возьмет трубку очень долгую в 33 фута и вместо ртути нальет воду, тогда она, на 31 фут поднявшись, с воздухом в равновесии стоять будет. Итак, явно есть, что воздух своею тягостию столько же давит, сколько вода вышиною в 31 фут ренский. Трубка, ртутью наполненная, называется Торрицеллиева, для того, что сей опыт изобрел Торрицеллий" (Там же, с. 441).
Сообщает Ломоносов и об открытиях Гримальди:
"Ежели тонким лучом, в темную каморку пущенным, освещена будет тонкая проволока или волос, то в нарочитом оттуду расстоянии отброшенная тень будет много шире, нежели диаметр проволоки или волоса: из чего видно, что свет, прикоснувшись к телу, несколько в сторону отвращается, которую перемену прежде всех Грималд приметил, а потом Невтон в «Оптике» […] пространнее оное доказал и наклонением света назвал" (Там же, с. 480).
Как христианин Ломоносов был весьма благочестив, в чем походил на своего учителя Христиана Вольфа, над верой которого издевался Энгельс в «Диалектике природы»: «Высшая обобщающая мысль, до которой поднялось естествознание рассматриваемого периода, это – мысль о целесообразности установленных в природе порядков, плоская вольфовская телеология, согласно которой кошки были созданы для того, чтобы пожирать мышей, мыши, чтобы быть пожираемыми кошками, а вся природа, чтобы доказывать мудрость творца» (Ф. Энгельс. Диалектика природы. М., 1941, с. 9). "Но вышшее всего, - пишет Ломоносов, - и сердце и ум наш к небу возводящее спасительное есть дело представлять в уме своем непостижимое величество и непонятную премудрость Всевышнего Зиждителя, показавшего нам сие толь дивное позорище, сложенное из различных тварей на увеселение и пользу нашу, и за сие благодарить Его щедроте" (Собрание разных сочинений в стихах и прозе Михайла Васильевича Ломоносова. Ч. 3. Санкт-Петербург, 1808, с. 2).
Как мы уже говорили выше, выдающийся вклад России в европейскую науку имел место лишь в XIX веке. Первым ученым, прославившим Россию, был ректор Казанского университета математик Николай Иванович Лобачевский, создатель неевклидовой геометрии. В чем состояла проблема? Геометрия Евклида, созданная в конце IV - нач. III вв. до н.э. в Александрии Египетской, отличалась, с одной стороны, замечательной строгостью и логичностью доказательств (это был триумф аристотелевской логики), но, с другой стороны, для евклидовой геометрии также была характерна неясность и запутанность основных положений (определений, аксиом и т.п.). Например, евклидово определение точки как "то, что не имеет частей", противоречит основному закону понятийной логики, согласно которому нельзя давать чисто отрицательных определений. Еще более странным выглядит определение у Евклида прямой линии: "Прямой линией называется такая линия, которая ровно лежит на своих точках". Здесь налицо порочный круг: прямая - та линия, что "ровно лежит"; но что такое в этом случае "ровно лежать"? В школе обычно говорят ученикам, что эталон прямой - это луч света. Это, однако, убедительно, лишь в том случае, если мы уверены, что свет распространяется по прямой. Более строгим, может быть, является определение отрезка как кратчайшее расстояние между двумя точками, но для этого надо сначала определить, что такое расстояние.
Проблема состоит в том, что прямая является кратчайшим расстоянием между двумя точками для того, кто путешествует по плоской поверхности; однако для того, кто путешествует по сферической поверхности, кратчайшим расстоянием между двумя точками будет уже не прямая, а отрезок дуги. Лобачевский первым предположил, что наш мир может быть неевклидовым, т.е. что наши прямые не являются истинными прямыми. Одним из следствий этого является возможность пересечения в какой-то точке двух прямых, перпендикулярных третьей (в евклидовой геометрии это невозможно). Чтобы проверить в каком мире мы живем, надо найти очень большой треугольник и измерить в нем сумму углов. Если эта сумма составит точно 180 - значит, мы живем в евклидовом мире. Проблема, однако, заключается в том, что при малой кривизне пространства требуются очень большие треугольники и очень высокая точность измерений. Лобачевский, первым предложивший произвести подобные измерения, не имел технических возможностей осуществить свой проект.
Позднее идея Лобачевского пригодилась для разрешения фотометрического парадокса, возникающего в бесконечной трехмерной евклидовой вселенной, заполненной бесконечным числом звезд. Как мы упоминали в предыдущей лекции, еще Бошкович отметил, что освещенность убывает обратно пропорционально квадрату расстояния. Французский астроном Шезо рассчитал, что освещенность ночного неба при бесконечном числе звезд должна быть бесконечно большой, ибо если мы возьмем какую-то сферическую поверхность, то, с одной стороны, освещенность, создаваемая звездами, расположенными на этой поверхности, будет обратно пропорциональна квадрату радиуса сферы, задающей эту поверхность, а, с другой стороны, та же освещенность будет прямо пропорциональна числу звезд, которое, в свою очередь, прямо пропорционально площади этой сферической поверхности, т.е. квадрату радиуса задающей поверхность сферы. В итоге освещенность оказывается вовсе не зависящей от радиуса сферической поверхности и, таким образом, сколь угодно удаленные от нас звезды дадут в сумме не бесконечный, а конечный вклад в освещенность, которая станет бесконечной, когда мы просуммируем вклады всех звезд, число которых мы считаем бесконечным. Чтобы избежать этого парадокса, Шезо выдвинул гипотезу о поглощении света звезд межзвездной пылью или туманностями. Эту идею поддержал датский астроном Ольберс в 1823 году. Однако с развитием термодинамики выяснилось, что никакие туманности не смогут нас защитить от бесконечно сильного излучения, т.к. поглощение света туманностями приведет к тому, что они сами нагреются и начнут излучать свет.
Всех этих трудностей легко избежать, если принять идею Лобачевского о неевклидовости нашего пространства. Как показал немецкий астроном Целльнер, если наша вселенная представляет собой не плоское трехмерное евклидово пространство, делящее четырехмерное пространство пополам симметричным образом, а более сложную замкнутую трехмерную поверхность в четырехмерном пространстве, например, поверхность четырехмерной сферы, то в нашей вселенной можно будет разместить лишь ограниченное число звезд, ибо вселенная будет иметь конечный объем. Так, идея, впервые высказанная русским ученым Лобачевским, помогла Целльнеру решить важную космологическую проблему. Целльнер, перечисляя имена ученых, внесших вклад в создание неевклидовой геометрии, упоминает и Лобачевского (Ueber die Natur der Cometen. Beitraege zur Geschichte und Theorie der Erkenntniss von J.C.F. Zoellner. Gera, 1886, S. 98). Далее Целльнер  пишет: «Ясно, таким образом, что также и идеи, выдвинутые Ольберсом, приводят к предположению, что количество материи во вселенной должно быть конечным, а это предположение […] может быть принято лишь в том случае, если мы признаем, что наше пространство неевклидово» (Ibid., S. 103).
Вот как оценивает вклад Лобачевского в науку английский математик Уильям Кингдон Клиффорд: "То, кем был Везалий по отношению к Галену, Коперник - по отношению к Птолемею, тем был Лобачевский по отношению к Евклиду" (W.K. Clifford. Lectures and Essays. Vol. 1. London, 1879, p. 297).
Еще одним выдающимся русским ученым, сделавшим значительный вклад в науку, является Дмитрий Иванович Менделеев. Как известно, Аристотель считал, что в природе существует лишь четыре элемента: земля, вода, воздух и огонь, из которых состоят все тела в подлунном мире. Однако уже в 70-е годы XVIII века английский естествоиспытатель и богослов Пристли и французский химик Лавуазье показали, что огонь не является элементом, но горение происходит благодаря наличию в воздухе кислорода. Попутно выяснилось, что воздух - это не элемент, но смесь различных газов. К 60-м годам XIX века было известно уже около 60 элементов, причем к тому времени химики уже научились определять их атомные веса. В XIX веке ученые отказались от идей Аристотеля, Декарта и Спинозы о непрерывности материальной субстанции и признали правоту атомистических идей (или в варианте, предложенном Ньютоном, или в варианте, предложенном Бошковичем). Заслуга Менделеева заключалась в том, что он, расположив элементы в виде некой таблицы в порядке возрастания их атомных весов, сумел увидеть периодичность в повторении их основных свойств. Подобно Копернику, Менделеев руководствовался идеями порядка и гармонии, которые должны царить во вселенной. Но, как в свое время Коперник не сумел объяснить, почему Солнце обязано находиться в центре планетной системы (это сделал Ньютон), так и Менделеев не смог указать причину периодичности повторения основных свойств элементов. Пример Коперника и Менделеева указывает на роль веры в естествознании. Подражая этим выдающимся ученым, христианин должен смело идти за Христом, уповая, что имеющие быть открытыми в будущем законы индивидуальной и социальной психологии покажут, что только в заповедях Христа заключена единственно возможная стратегия достижения человеком своего счастья, а всякое несоблюдение этих заповедей неминуемо приведет человека к гибели. В последующих лекциях мы покажем, как попытка последовательно провести в жизнь антихристианскую идеологию, имевшая место в СССР в 20-е - 60-е годы ХХ века, привела к упадку русской науки.