О науке для учащихся

Виктор Лёвин 3
   Учащиеся, склонные к научной деятельности, хотят и могут узнать о науке много важного и интересного. Современный учитель способен помочь им в этих стремлениях. При этом важно показать, что средства познания, применяемые в современной науке, в особенности в ее естественнонаучных областях, существенным образом связаны с процессом технизации науки. От развертывания такого процесса зависит новаторский итог развития научного познания в наше время.

   Интересно в данном отношении формирование новейшей атомной физики и физики атомного ядра. Конечно, лидирующее положение этой области науки сложилось за счет усилий и теоретиков, и экспериментаторов. Но получение фактического материала, стимулировавшего продвижение теоретической мысли, равно как и проверка теоретических выкладок с помощью экспериментов опирались на развитую техническую базу. Ее создание само потребовало новаторских подходов и решений. В этой области новое рождалось в тесном союзе ученых и инженеров. А инженерия, в свою очередь, вовлекала в решение научных задач определенные промышленные области, которые зачастую возникают в качестве уникальных экспериментальных разработок.

   Крупным рубежом, обозначившим указанную ситуацию, стало открытие в науке явления радиоактивности (самопроизвольное деление ядер химических элементов, в результате чего идет превращение одних элементов в другие). Для изучения радиоактивности создаются специфические установки. Кроме того, добыча радиоактивных веществ потребовала переработки больших масс природных веществ, что заставило искать и внедрять в эту область деятельности сложные технологии. Создается также новая техника и технология для изучения искусственной радиоактивности.

   Для ее изучения ставились особые эксперименты. Так, в экспериментах, проведенных Э. Ферми и Э. Сегре в 1934 г., осуществлялась бомбардировка нейтронами ядер урана. Облученный уран проявлял при этом искусственную радиоактивность, его ядро распадалось на два ядра примерно одинаковой массы. Выяснилось также, что ядра-фрагменты имеют избыточное число нейтронов и потому оказываются в значительной степени нестабильными, сами испускают часть нейтронов. Было установлено также, что при реакции деления урана выделяется очень большое количество энергии.

   В итоге была показана возможность цепной реакции деления с высвобождением громадного количества энергии. Под руководством Э. Ферми в 1942 г. в Чикагском университете был построен «атомный котел», в котором впервые осуществлена самоподдерживающаяся цепная ядерная реакция. Техническая мысль вместе с учеными продвинулась далее к созданию разных типов реакторов, среди которых более эффективными оказались реакторы-размножители, использующие быстрые нейтроны. Их конструируют так, чтобы в течение нескольких лет реактор-размножитель удваивал исходное количество радиоактивного топлива, заложенного в него вначале.

   Для изучения структуры атомов и выяснения особенностей взаимодействия атомных частиц были предложены разнообразные высоковольтные электростатические машины, смысл действия которых – создание электрически заряженных ионов и придание им большой скорости движения в соответствующем электрическом поле, что обеспечивало бомбардировку атомов разных веществ, позволяло экспериментально наблюдать ядерные реакции. Первое высокое напряжение, создающее поток ионов с энергией свыше 1 МэВ, было достигнуто на генераторе Ван-де-Граафа в Вашингтоне.

  Параллельным путем шло создание нового типа машин – циклотронов, бетатронов, линейных ускорителей, синхрофазотронов. В настоящее время работают ускорители, которые могут разгонять протоны до энергий свыше 1000 ГэВ. Исследования на подобных установках привели к открытию новых химических элементов, которые не наблюдаются в естественных условиях Земли.
 
   Сказанное позволяет сделать вывод о существовании своеобразных зон новизны в современной науке. Возникая в определенное время и при определенных условиях, они обеспечивают поворот науки к решению принципиально новых задач. Причем формулировка таких задач требует оригинального научно-теоретического подхода, а вместе с тем – высокой изобретательности в экспериментальной области и существенного продвижения в промышленно-техническом направлении. Радиоактивность и достижения ядерной физики вошли составными элементами в одну из подобных зон новизны.

   Следует также выделить физику твердого тела и работы по исследованию полупроводников. На их базе сформировался узел развития, который позволил современной науке выйти в принципиально новую область деятельности по созданию электронной техники и решению задач кибернетизации общества. Данное направление работ впитало в себя достижения вычислительной математики, использует потенциал математической логики, теории информации. С ним связана современная цифровая революция. Но есть и более широкие горизонты: практически все современные системы связи, включая высокоскоростной Интернет, мобильную телефонию, кабельное телевидение, оптоволоконную связь, возникли и развиваются, как подчеркивает Ж. Алферов, на основе полупроводниковой техники и технологий. Оптоэлектроника, СВЧ-техника, космическая энергетика также немыслимы без использования новейших достижений в области полупроводниковых гетероструктур.

   Инновационная направленность науки, безусловно, поддерживается притоком творческой талантливой молодежи, способной в относительно короткий срок получить эффективную теоретическую, методологическую и организационно-управленческую подготовку. При этом важно, чтобы таланты оказались причастны к разработке проектов, имеющих  прикладное и фундаментальное значение здесь, у нас, т.е. в России. Моральное и материальное поощрение их работы обязано входить в число приоритетов современной молодежной политики.

   Сегодня понятно, что инновационная отдача науки зависит от экономических условий, в которых она существует. В том числе речь идет об источниках финансирования научной работы. Нобелевский лауреат Ж. Алферов подчеркивал, что знания как научный продукт не могут быть в полной мере товаром частно-капиталистического рынка. И потому, как он полагал, фундаментальная наука должна получать государственную поддержку в виде заказов на разработку передовых направлений, обозначившихся в современной науке.

   Понятно и то, что наука останавливается в своем развитии, если не имеет выхода в технологии, в производство, в решение крупных социальных проблем (в медицину, образование и пр.). Стопор возникает, если рвется связь науки с практикой. И дело здесь не в частностях, например, в отсутствии личной инициативы ученых. Действительно весомым, по мнению Ж. Алферова, является сбой, возникающий на уровне научно-технической политики, в выстраивании общегосударственных приоритетов.

    Востребованность науки поддерживается не рекламой ее отдельных достижений, а развертыванием стратегии в государственном масштабе в сфере создания наукоемкого производства, наукоемкой экономики.

   Желаю успехов ученикам современных школ в овладении научными технологиями!