Введение в термодинамику

Виктор Лёвин 3
    Известно, что далеко прошла в своем развитии теоретическая термодинамика. Она рассматривает системы, приспособленные для переноса тепла от источника тепла к холодильнику с помощью рабочего тела. Такие системы способны выполнять некоторую полезную работу. В общем случае процессы в подобной системе являются обратимыми. Главное условие обратимости – сохранение равновесного состояния всех тел, принимающих участие в термодинамическом процессе. Здесь предполагается неизменной связь между параметрами состояния, т.е. квазистатичность, сохранение определенной константы в соотношениях термодинамических параметров. Весьма важную форму этой константы дает, например, закон Менделеева-Клапейрона:
PV = GRT.

    Общим результатом теоретической термодинамики является выработка представления о том, что состояние термодинамической системы зависит как от внешних, так и от внутренних условий. Это обстоятельство учитывается в понятиях о свободной и скрытой теплоте, а также о внешней работе и внутренней энергии термодинамической системы. С представлением о внутренней энергии в термодинамике тесно связано понятие о самопроизвольном процессе, который осуществляется как переход теплоты от более нагретого тела к менее нагретому. Для противоположного перехода нужна энергетическая компенсация.

    Надо заметить, что специфика термодинамического подхода связана с доказательством возможности замещения (эквивалентности) основных процессов, протекающих в системе (превращение тепла в работу и переход тепла от более нагретого тела к менее нагретому, которые представляются как эквивалентные). Это обстоятельство было обосновано еще в работах Р. Клаузиуса. Он  бобосновал также необходимость и всеобщность идеи циклов в описании термодинамических превращений. С помощью этой идеи улавливается одно из базовых проявлений сложных систем – циклический характер протекающих в них процессов. Там, где предполагается разрыв замкнутой цепи, всегда обнаруживается компенсирующее направление процесса. Термодинамика дает полное отражение указанной компенсации для неживых систем. Этой цели служат первое и второе начала термодинамики, задающие матрицу энергоэнтропийного описания внутрисистемных преобразований.

    Все это составило базу классической термодинамики. Она имеет своим  предметом равновесные системы. Для нее показательно решение задач термостатики. И в ней осуществляется отыскание функциональных определителей для замкнутых систем, таких как внутренняя энергия, энтальпия, энтропия.

    Напротив, современная неклассическая термодинамика имеет дело с неравновесными системами. Для последних характерна определенная необратимость, эффект которой невозможно свести к нулю. Методы неклассической термодинамики основаны на использовании неизвестных для классического подхода понятий, таких как "поток энтропии", "скорость возрастания энтропии" и др. Опора на такие понятия дала возможность вывести термодинамические уравнения движения, выявить принципы симметрии, которые обусловливают протекание термодинамических процес¬сов в системе. Тем самым вводился в научную методологию язык обобщенного типологического описания систем.

    К термодинамике примыкает молекулярно-кинетическая теория. В ней моделируется поведение газа, замкнутого в некотором объеме. При этом учитывается корпускулярно-молекулярная структура газа, а молекулы рассматриваются как свободно движущиеся в пространстве. Одновременно вводится представление о том, что полная "живая сила" всех молекул (по терминологии Джоуля) обусловливает теплоту газового тела. В рамках этой теории впервые в науке было использовано уровневое понимание системы и предпринята попытка объяснить макрохарактеристики термодинамической системы с помощью микрохарактеристик. Здесь исходя из механической трактовки движения молекул показывается, что существует функциональная зависимость между давлением газа, его плотностью и суммарной кинетической энергией занимающих его объем молекул. Следствием такой зависимости является, в частности, хорошо известный закон Бойля-Мариотта.

    Рассматриваемая теория учитывает ряд сложных условий, влияющих на термопараметры системы:
– способность молекул совершать внутреннее движение;
– существование средней длины свободного пути молекулы;
– неравномерность распределения скоростей молекул.
На первых этапах своего формирования молекулярно-кинетическая теория базировалась на общих методологических принципах механики. Процессы, протекающие в молекулярных системах, описывались сугубо с механических позиций. Более того, классики термодинамики пытались трактовать само учение о теплоте в качестве одного из разделов механической теории. Ярким проявлением этой тенденции были работы по обоснованию второго начала термодинамики, основанные на предположении о наличии некоторого механизма молекулярного движения и механике сил, действующих между молекулами. По такому пути двигался, например, Л. Больцман. Однако не кто-нибудь, а именно Л. Больцман, осознал невозможность полной аналогии в механическом и молекулярно-кинетическом описаниях системы. В последнем случае неизбежно привлечение понятий, выходящих за рамки механики. В число таких понятий входило, например, определение средней кинетической энергии в течение значительного промежутка времени. Полное осознание данного обстоятельства послужило основанием для характеристики законов кинетической теории как статистических.

    Изучение молекулярных систем показало, что из взаимодействий одного какого-либо уровня могут рождаться новые качественные особенности, характерные для больших совокупностей. Так, из хаотического движения молекул возникают закономерности, наблюдаемые в поведении массы газа как целого. При этом мы имеем дело с особым типом формирования состояния системы. Здесь наличие беспорядка на некотором элементном уровне обусловливает равновозможность всех направлений движения молекул в пространстве, а также одинаковую плотность газа в разных частях его замкнутого объема (показано Р. Клаузиусом). А учет таких параметров становится отправной точкой для применения новых способов моделирования молекулярной системы. В отношении последней признается, что начальные координаты и скорости молекул неизвестны. Тем не менее можно установить статистические переходы от микропараметров к макропараметрам системы и на этом основании формулировать достаточно строгие выводы о поведении газа в целом.

    Замечательно то, что статистическое описание молекулярных систем позволяет получать вполне строгие выводы в отношении ряда процессов: выравнивание температуры за счет усреднения скоростей молекул и их перемешивания, установление теплового равновесия и т.д. Новизна статистического моделирования заключается еще и в том, что в описание молекулярных систем и в анализ их функционирования вводится идея множества путей приобретения системой некоторого предпочтительного состояния. Статистический подход, применяемый в таком анализе, учитывает разнообразие этого множества и выявляет вероятность нахождения системы в некотором конечном состоянии. Для предпочтительного состояния вероятность должна иметь максимальное значение, во всех других случаях вероятность уменьшается. Существенно, что за мерой вероятности состояния системы стоит, как показал еще Л. Больцман, “мера распределяемости” (хаотичности) системы.

    Сказанное позволяет сделать вывод, что развитие термодинамики оказалось связанным с выявлением необычных эффектов, неожиданных констант и закономерностей. Через термодинамику прошел путь формирования неклассической науки.