Клетки - особенности строения и деления

Андрианов Владимир 2
                Клетки - особенности строения и деления

Клеточная теория является одной из основополагающих в современной биологии. Ее разработка стала неопровержимым доказательством единства всего живого на Земле.

Согласно клеточной теории, клетка это — структурно-функциональная элементарная единица строения, функционирования, размножения и развития всех живых организмов.
Вне клетки нет жизни.

Все клеточные формы жизни на Земле можно разделить на две большие группы на основании структуры их строения.

Прокариоты (доядерные) — более простые по строению, которые возникли на ранних стадиях процесса эволюции.

Эукариоты (ядерные) — более сложные, которые возникли и развивались на более поздних стадиях процесса эволюции.

Клетки, составляющие тело человека, являются эукариотическими. По последним данным ученых в теле обычного человека насчитывается в среднем 37,2 триллиона клеток.

Группа ученых из Италии, Греции и Испании поставила себе задачу определить реальное количество клеток в человеческом организме. Они изучили все ранние научные труды в этой области за последние сто лет.

В результате обнаружили большой разброс в оценках данного показателя, который вирировался от 5 миллиардов до 200 триллионов клеток.

Поэтому авторам пришлось проделать скрупулезную работу, сделав отдельный подсчет клеток для каждого органа человеческого тела и для разных типов клеток организма.

Были посчитаны число и плотность клеток в сердце, легких, мозге, центральной нервной системе, кишечнике, желчном пузыре, костях, соединительных тканях, крови и многих других частях человеческого организма.

Просуммировав полученные результаты, ученые пришли к выводу, что в организме человека в среднем насчитывается 37.2 триллионов клеток.

Например, вспомогательных клеток -  нейроглия (глия) около 3 трлн, здоровая печень состоит из 240 миллиардов клеток, нервных клеток около 100 млрд., нейронов - 65 млрд., в сердечной мышце – около 2 млрд.  клеток и др. (данные из научного журнала «Annals of Human Biology».

В организме человека присутствует примерно 300 типов клеток, которые подразделяются на две большие группы:

• клетки, которые могут делиться и размножаться, то есть, они митотически компетентны;
• клетки, которые не делятся называют постмитотические. Это достигшие крайней стадии дифференцировки нейроны, кардиомиоциты, зернистые лейкоциты и другие.

Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам.

Большинство клеток человеческого организма постоянно делятся, на смену старым приходят новые. Благодаря этому процессу в течение жизни организм имеет возможность обновляться и восстанавливаться.

По подсчетам ученых, клетки человека за 70 лет жизни суммарно претерпевают порядка 1014 клеточных делений.

Таким образом, каждая мышца, каждый орган, каждая функциональная система, человека в течение жизни несколько раз «молодеет», как бы рождаясь заново.

Наиболее распространённый способ репродукции эукариотических клеток человека, один из фундаментальных процессов онтогенеза это митоз – непрямое деление клетки.

Биологическое значение митоза заключается в строго одинаковом распределении хромосом между дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений.

Продолжительность митоза в среднем составляет 1—2 часа.
Процесс размножения клеток называют пролиферацией.  Размножение регулируется как самой клеткой (аутокринными ростовыми факторами), так и ее микроокружением (паракринными сигналами).

Активация пролиферации происходит через клеточную мембрану, в которой присутствуют рецепторы, воспринимающие митогенные сигналы. Это в основном ростовые факторы и межклеточные контактные сигналы.
Ростовые факторы обычно имеют белковую, пептидную природу (определенную последовательность соединения аминокислот).

В настоящее время ученым известно около 100 таких факторов, в том числе:

• фактор роста тромбоцитов, который участвует в тромбообразовании и заживлении ран;
• эпителиальный фактор роста;
• фактор некроза опухолей;
• колониестимулирующие факторы;
• различные цитокины — интерлейкины и т.д.

Время существования клетки от деления до деления называется клеточным циклом.
После активации пролиферации клетка выходит из фазы покоя G0 и начинается клеточный цикл.

Клеточный цикл может активироваться или инактивироваться.
Активация происходит за счет ключевых ферментов - цнклинов, которые получили свое название в связи с тем, что их внутриклеточная концентрация периодически изменяется, достигая максимума на определенных стадиях цикла.

В процессе активации могут участвовать киназы – ферменты катализаторы переноса фосфатной группы от молекулы аденозинтрифосфата (АТФ), обеспечивая включение глюкозы и гликогена в процесс гликолиза в живых клетках.

Инактивированиия регулируется за счет различных ингибиторов – веществ подавляющих или задерживающих течение физиологических и физико-химических, ферментативных процессов. 

Молекулярные механизмы, приводящие к необратимой остановке клеточного цикла, контролируются генами-супрессорами.

Цель такой сложной организации процесса регуляции — обеспечить синтез ДНК с минимально возможным числом ошибок, чтобы и дочерние клетки имели абсолютно идентичный наследственный материал.

Проверка правильности копирования ДНК осуществляется в четырех «контрольных точках» клеточного цикла. Если обнаруживаются ошибки, то клеточный цикл останавливается, и включается репарация ДНК.

Если нарушения структуры ДНК удается исправить — клеточный цикл продолжается. Если нет — клетка может «покончить с собой» путем апоптоза, чтобы избежать вероятности превращения в раковую.

Супрессию клеточного цикла в фазе G1 осуществляет белок p53, действующий через ингибитор циклин-зависимой киназы р21.

Следует отметить, что в последние годы, пожалуй, ни один другой белок не изучался так интенсивно, как р53. За четверть века с момента открытия ему было посвящено более 40 тысяч научных работ, и их число неуклонно продолжает расти.

Очевидно, белок р53 не только получает сигналы о превышении некоторых пороговых величин в каждом из клеточных процессов, но и обеспечивает адекватные этим величинам ответы, обеспечивающие координированную коррекцию этих процессов, дальнейшее поведение и судьбу клеток.

Роль р53 в организме можно сравнить с ролью дирижера в оркестре – его функции осуществлять контроль за выполнением выработанных эволюцией программ, схем поведения клеток в разнообразных условиях.

Основная его биологическая роль заключается в обеспечении стабильности генома и генетической однородности клеток в целостном организме.
Контролирующая функция р53 заключается в предотвращении отклонений и связанных с ними патологий,

Транскрипционный фактор р53 активируется при повреждениях ДНК, и в этом случае его функция заключается в удалении из реплицирующихся клеток тех, которые являются потенциально онкогенными.

Не случайно ген р53 часто метафорически называют как «стражем генома», «ангелом-хранителем», «геном совести клетки».  Эти эпитеты наглядно отражают роль белка в предотвращении многих болезней.