Эксперимент с источником псевдо-запутанных частиц

Петр Путенихин
Эксперимент по схеме Аспекта с источником псевдо-запутанных частиц
или
когда неравенства Белла не нарушаются

Путенихин П.В.
m55@mail.ru

Аннотация
Со дня опубликования в 1964 году статьи «On the Einstein Podolsky Rosen paradox» и до наших дней доводы Белла, более известные в форме «неравенств Белла», служат самым распространённым и главным аргументом в споре между представлениями о нелокальности квантовой механики и целым классом теорий на основе «скрытых переменных» или «дополнительных параметров», сформулированных в самом обще виде. Белл показал, что существуют некоторые условия (названные впоследствии «неравенствами Белла»), которые соблюдаются для локальных теорий, но нарушаются квантовой механикой.

В предлагаемой статье утверждается, что предсказания квантовой механики и локальных теорий относятся к принципиально разным видам пар частиц: классическим ЭПР-парам и вероятностным, независимым (псевдо-запутанным) парам частиц.

Рассмотрены предсказания двух теорий для обоих классов пар и показано, что они полностью совпадают. В случае псевдо-запутанных пар, которые рассматривают теории дополнительных параметров, неравенства Белла не нарушаются и для предсказаний квантовой механики. В свою очередь для классических ЭПР-пар теория дополнительных параметров дает такие же предсказания, что и квантовая механика, и вместе с нею также требует «нелокальности», которая фактически является завуалированным отказом от релятивизма («призрачное дальнодействие»).

Ключевые слова
Неравенства Белла, эксперимент Алена Аспекта, ЭПР-парадокс, запутанность, псевдо-запутанность, нелокальность, скрытые переменные, локальные теории, дальнодействие

Главным доводом в пользу квантовой механики в противостоянии с локальными теориями является нарушение неравенств Белла. Для некоторых равных условий эксперимента квантовая механика предсказывает более высокую степень корреляции измерений, чем локальные теории, использующие дополнительные параметры. Однако являются ли эти условия экспериментов равными? Очевидно, это не так. Для квантово-механических предсказаний неявно признается взаимное влияние измерений друг на друга. Для локальных теорий такое влияние явным образом исключается.

Анализ рассуждений Аспекта при исследовании теории дополнительного параметра и приведенного уравнения позволяет сделать вывод, что произошел незаметный отход от сущности квантовой корреляции запутанных частиц в отношении локальной теории. Это вызвано исключительно формализмом рассматриваемой теории дополнительного параметра, а не ошибкой в рассуждениях Аспекта или Белла. Действительно, уже на этом этапе видна невозможность правильных предсказаний такой теории. Произведение частных вероятностей двух фотонов означает, что прохождение одним фотоном своего поляризатора никак не связано с тем, пройдет ли свой поляризатор другой фотон. Эксперимент же явно показывает, что такая связь (зависимость) имеется. Следовательно, можно сделать вывод, что рассматриваемая Аспектом белловская модель теории дополнительного параметра изначально непригодна с точки зрения уже подтвержденной практикой формулы:

Уравнение 1.

где:
P(a,b) – вероятность совместного прохождения двух запутанных фотонов через поляризаторы;
(a,b) –угол между поляризаторами.

Эта формула имеет простой и наглядный физический смысл. Вероятность совместного прохождения поляризаторов двумя запутанными фотонами P(a,b) равна произведению двух вероятностей. Первая вероятность 1\2 – это вероятность прохождения первым фотоном своего поляризатора. Вторая вероятность – второй сомножитель в формуле (1) – это вероятность прохождения вторым фотоном своего поляризатора. Как видим, эта вероятность вычисляется как вероятность прохождения фотоном поляризатора, образующего угол (a,b) с направлением поляризации фотона. С квантово-механической точки зрения, этот угол равен углу между поляризаторами, поскольку второй фотон приобретает направление поляризации, равное направлению первого поляризатора.

 Таким образом, можно утверждать, что уравнения теории дополнительного параметра и квантовой теории относятся к разным схемам эксперимента. Квантовое описание учитывает зависимость двух измерений друг от друга, а локальная теория – нет. Поэтому можно задаться вопросом: насколько обоснованно использовать вероятностную модель к заведомо зависимым процессам?

 Если приведенные доводы хоть в какой-то мере обоснованны, то возникает естественный вопрос: какую схему описывает теория дополнительного параметра? Поскольку фактически теории локального реализма не описывают явление запутанности, то рассмотрим другое явление, которое на наш взгляд подпадает под описание локальной теории, и которое назовем для определенности явлением псевдо-запутанности. Это явление одинаково описывают и квантовая теория, и теория дополнительного параметра (или теория локального реализма – локализм).

А возможны ли равные условия для двух теорий, и каковы будут их предсказания для этих условий? Как отмечено, неравенства Белла для локальных теорий сформулированы в предположении, что результат одного измерения не зависит от результата другого измерения. Но эти же условия можно создать и для квантово-механического эксперимента. То есть, мы можем сделать квантово-механические предсказания для эксперимента, полностью соответствующего условиям локальных теорий, когда частицы имеют те же характеристики, которые им приписывают локальные теории. Такими характеристиками являются: отсутствие взаимного влияния частиц друг на друга в смысле эйнштейновского локального реализма. Ясно, что в этом случае частицы не являются запутанными.

Поскольку фактически теории локального реализма не описывают явление запутанности, то рассмотрим другое явление, которое на наш взгляд подпадает под описание локальной теории, и которое назовем для определенности явлением псевдо-запутанности. Очевидно, что это явление одинаково описывают и квантовая теория и теория дополнительного параметра (или теория локального реализма – локализм).

Рассмотрим, в чем состоит явление псевдо-запутанности, сопоставив общие черты и различия запутанных и псевдо-запутанных частиц. Общим у таких частиц является их следующее одинаковое поведение:

1.Если одна из частиц достоверно проходит поляризатор, то вторая так же достоверно не проходит поляризатор – для поляризаторов, настроенных на не прохождение пар частиц. Для синглетных частиц – это перпендикулярное расположение поляризаторов, когда одна из осей поляризаторов совпадает с направлением поляризации псевдо-запутанных частиц.

2.Если одна из частиц достоверно проходит поляризатор, то вторая также проходит его достоверно (параллельное расположение поляризаторов и поляризации псевдо-запутанных частиц).

Различие запутанных и псевдо-запутанных частиц является принципиальным и восходит к ЭПР-эксперименту: запутанные частицы (в данном случае – фотоны) описываются единым вектором состояния и частицы не имеют определенной поляризации, а псевдо-запутанные частицы описываются каждая своим вектором состояния, и частицы находятся в собственных состояниях. То, что псевдо-запутанные частицы находятся в собственных состояниях, позволяет каждой из них приписать определенное направление поляризации, которое в общем случае может быть известно экспериментатору.

Важным обстоятельством является то, что существует простой способ получить псевдо-запутанные частицы, обладающие основными свойствами запутанных частиц (синглетность, например), но не имеющие такой же корреляции, как классические запутанные частицы. То есть псевдо-запутанные частицы – это переведенные в собственное состояние запутанные частицы. Это необходимое требование для теории дополнительного параметра, и оно корректно описывается также и квантовой теорией. Это хорошая предпосылка для сравнения предсказаний локального реализма и квантовой теории и их экспериментальной проверки.

Методика получения запутанных частиц отработана достаточно хорошо, а получение псевдо-запутанных частиц следует рассмотреть подробнее. Очевидно, что источник таких частиц должен обеспечить соблюдение следующих требований:

1.Частицы должны испускаться всегда парами, чтобы гарантировать, что это именно пара псевдо-запутанных частиц, а не две никак не связанные частицы;

2.Частицы должны находиться в собственных состояниях, чтобы гарантировать определенность и взаимосвязь их поляризации (параллельные);

3.Вектор поляризации пары частиц должен иметь случайное направление (в плоскости, перпендикулярной линии распространения частиц).

Таким требованиям отвечает следующая конструкция источника (рис.1).
 
Рис.1 Источник псевдо-запутанных частиц

Источник S излучает пары запутанных фотонов (для совместимости с ЭПР – в синглетном состоянии), посланных в противоположных направлениях. Каждый фотон встречает на своем пути поляризатор p или q, которые ориентированы одинаково. Поскольку фотоны запутаны, то они оба проходят через поляризаторы, переходя в синглетные собственные состояния. Приведем поляризаторы p-q  (можно вместе с источником S) в синхронное вращение вокруг оси, вдоль которой распространяются фотоны (либо используем другие способы синхронного вращения направления поляризации частиц). Теперь прошедшие через поляризаторы пары фотонов отвечают условиям 1…3. Для специфической ситуации (a,b)=0, когда поляризаторы параллельны, и квантовая механика и теория дополнительных параметров предсказывают вероятности совместного обнаружения:

Уравнение 2.

Это значит, что на установке Аспекта  [1, 2, 3, 7] когда фотон v1 найден в + канале поляризатора I, v2 найден с достоверностью в + канале II (аналогично для каналов -). Для параллельных поляризаторов, таким образом, установлена полная корреляция между индивидуальными случайными результатами измерений поляризации двух фотонов v1 и v2.

Предложенный источник псевдо-запутанных фотонов можно использовать для проверки неравенств Белла в соответствии с описанной Аспектом методикой [1, 2, 3, 7].

Предсказания теорий для псевдо-запутанности (см. ссылку в конце анонса)

Выводы
Белловский аргумент (нарушение неравенств) не является достаточным основанием для опровержения теорий дополнительных параметров и эйнштейновских представлений об элементах физической реальности. Основной вопрос - о нерелятивистской зависимости в поведении запутанных частиц – остается открытым. Причиной возникновения противостояния между теорией дополнительных параметров и квантовой механикой следует считать подмену понятий – каждая из теорий рассматривает свой собственный класс частиц.

Все локальные теории описывают явление запутанности с вероятностной точки зрения, принимающей, что корреляция пар частиц вызвана «случайным», вероятностным совпадением измерений, поскольку оба измерения не могут влиять друг на друга. Эксперименты Аспекта (и других исследователей) показали, что результаты измерений зависят друг от друга, поэтому локальная вероятностная модель не может быть применена к запутанным частицам.

Локальное вероятностное описание может быть применено к специфической модели псевдо-запутанных частиц. Эта модель одинаково описывается и локальной теории дополнительного параметра и квантовой теорией.

В эксперименте по схеме Аспекта [2] с использованием в качестве источника частиц источник псевдо-запутанных частиц обе теории дают одинаковые предсказания совместного прохождения частиц. Эти предсказания отличаются от предсказаний квантовой теории для запутанных частиц и от результатов эксперимента с этими частицами.

Эксперимент по схеме Аспекта [2] с псевдо-запутанными частицами не проводился и его результат может совпасть с приведенным анализом. Такой результат не противоречит ни квантовой теории, ни теории дополнительного параметра и наиболее вероятен.

Плохо обоснованным является предположение, что возможен иной исход эксперимента с источником псевдо-запутанных частиц по схеме Аспекта [1, 2], когда количества совместных прохождений частиц совпадут с предсказаниями квантовой теории для запутанных частиц. Такой исход будет означать ошибочность представлений об отсутствии у запутанных частиц определенной поляризации.


Литература (первые три источника из 11)
1. Aspect A., Dalibard J., Roger G., Experimental Test of Bell’s Inequalities Using Time-Varying Analysers. – Phys. Rev. Lett. 49, 25, (1982).
2. Aspect A.,  «Bell’s theorem: the naive view of an experimentalist», 2001, http://quantum3000.narod.ru/papers/edu/aspect_bell.zip
3. Aspect А., Теорема Белла: наивный взгляд экспериментатора, (Пер. с англ. Путенихина П.В.), Квантовая Магия, 4, 2135 (2007),
http://quantmagic.narod.ru/volumes/VOL422007/p2135.html

01.04.2007

Адрес полного текста статьи в интернете URL:
http://samlib.ru/p/putenihin_p_w/pseudo.shtml