Прозрение или заблуждение?

Ирина Радунская
                Вод, в которые я вступаю, не пересекал ещё никто.
                Данте


ГЛАВА 1
 
ПРОЗРЕНИЕ ИЛИ ЗАБЛУЖДЕНИЕ?

Двадцатое столетие застало учёных в приятном заблуждении. Им казалось, что они знают всё или почти всё об окружающем мире. Вдохновение Галилея, прозорливость Ньютона освободили человеческий разум от паутины, сотканной из ошибочных утверждений древних схоластов и искусственных представлений средневековья. Плечами гигантов была поднята стройная система человеческих знаний. Фундаментальная наука о неживой природе – физика – вскрыла главнейшие законы, охватывающие, как думалось, все стороны жизни вселенной. Это величественное здание, получившее название классической физики, казалось, вмещало в себя разгадки всех раскрытых и ещё не раскрытых тайн природы.
На рубеже XX века это благополучие подверглось серьёзному испытанию.
Классическая физика оказалась скомпрометированной тем, что она не смогла объяснить ряд вновь открытых фактов.
Она стала в тупик перед простым нагретым телом. Каждый школьник знает, что, сунув кусок вещества в огонь, его можно довести до красного и даже белого каления. Любое раскалённое вещество, если только оно не разрушится при нагреве, будет светиться. И чем выше его температура, тем более яркий свет оно излучает. Даже цвет звёзд зависит от их температуры. Но когда учёные попытались понять, почему цвет излучения не зависит от их состава, формулы отказались дать однозначный ответ. Они отзывались об этом явлении самым противоречивым образом и только сбивали учёных с толку.
Попытки описать математически, как энергия нагретого тела излучается в пустое пространство, кончались разочарованием. Уравнения не давали ничего похожего на действительность. Из всех расчётов получалось: тепло так быстро улетучивается в окружающее пространство, что всего топлива, имеющегося на Земле, не хватит, чтобы вскипятить чайник! Это, конечно, противоречит опыту.
Опыт, верховный судья науки, отвергал все попытки построить теорию излучения. Классическая термодинамика и электродинамика, хорошо справлявшиеся с описанием сложнейших природных процессов, позволяющие описать работу всех известных машин, оказывались бессильными перед этой, казалось бы, простой задачей.
Проблемой занялся Макс Планк, берлинский профессор, уже завоевавший себе известность трудами по термодинамике. И он тоже начал танцевать от печки, исходя из привычной предпосылки: энергия от нагретого тела переливается в окружающее пространство так же непрерывно, как воды реки в океан.
Но и усилия Планка приводили к тем же обескураживающим выводам. Да, действительно, нагретое тело испускает лучи всех цветов: красные, зелёные, фиолетовые. Фиолетовые лучи очень жадные, они отбирают у тела и уносят с
собой львиную долю энергии. И всё-таки не они самые ненасытные. Ультрафиолетовые лучи и ещё более коротковолновые, лежащие за ультрафиолетовой областью спектра электромагнитного излучения, должны были, подчиняясь формулам, остудить все тела в природе, охладить вселенную до абсолютного нуля!

Так расчёты Планка подтвердили ужасный вывод: мир ожидает ультрафиолетовая смерть.
Но в окружающей жизни физики не находили ни малейшего симптома столь печального исхода. Они должны были избавить и теорию от нелепого заблуждения. Этой проблемой мучился не один Планк. Многие учёные не хотели мириться с бессилием созданных ими формул.
Но недаром имя Планка до сих пор произносится с благоговением. Планк избавил физику от призрака ультрафиолетовой катастрофы.
«После нескольких недель самой напряженной работы в моей жизни тьма, в которой я барахтался, озарилась молнией и передо мной открылись неожиданные перспективы», – говорил впоследствии Планк в своём нобелевском докладе.
Молния, о которой он упомянул, озарила целую область знаний о природе вещества. Это случилось в 1900 году. Рассматривая процесс обмена энергией между раскалённым телом и окружающим пространством, Планк предположил, что этот обмен совершается не непрерывно, а в виде небольших порций. Описав этот процесс математически, он пришёл к формуле, в точности совпадавшей с распределением энергии в спектре Солнца и других нагретых тел. Так в науку вошло представление о минимальной порции энергии – кванте.
Обычно говорят, что Планк пришёл к своему открытию случайно, что на идею введения дискретности – скачкообразности – в процесс передачи тепловой энергии он натолкнулся в результате экспериментальной математики, пытаясь добиться совпадения расчётов с опытом.
Сам Планк опровергает эту версию. Он рассказывает, что, будучи горячим поклонником крупнейшего из физи
ков, Больцмана, он показал ему свою работу. Она была выдержана в духе классических представлений о непрерывности тепловых и электродинамических процессов. Ответ знаменитого ученого поразил Планка. Больцман, безупречный классик, сказал, что, по его мнению, невозможно построить вполне правильную теорию процессов излучения без введения в них ещё неизвестного элемента дискретности.
Несомненно, указание Больцмана помогло Планку найти путь к его великому открытию. Если в его возникновении и сыграла свою роль случайность, то в ещё большей мере оно явилось закономерным диалектическим скачком в познании.
Вдумываясь в суть своей формулы и в возможности, открываемые введением кванта энергии, Планк понимал, что он выпустил из бутылки мощного джинна, способного потрясти самые основы описания природы. Он чувствовал, что не может даже оценить масштабы грядущего переворота, но инстинктивно догадывался, что его работа даст толчок лавине, которая наверняка разрушит фундамент физики, а это казалось ему опасным. Последующая история науки показала, насколько правильным было его предчувствие.
Будучи человеком консервативных взглядов, Планк медлил с опубликованием своего открытия. Оценивая его значение, он говорил, что либо оно полностью ошибочно, либо по масштабам сравнимо с открытиями Ньютона.
Коллеги Планка придерживались преимущественно первой точки зрения. Некоторые из них даже грозились отречься от физики, если «возмутительная» теория Планка не будет опровергнута.
Осенью 1900 года Планка посетил Рубенс. За чаем он показал свои чрезвычайно точные измерения распределения энергии в спектре нагретого чёрного тела. Результаты совпали с формулой Планка. Это решило сомнения. Планк опубликовал свою формулу. В фундаменте классической физики появилась основательная трещина.

С самого рождения квант оказался капризным младенцем. Введенный Планком в расчет в качестве кванта энергии, он появился в окончательной формуле в виде кванта действия – величины, являющейся произведением энергии на время. Причина этой трансформации оставалась неясной. Постепенно Планк, а вслед за ним и другие учёные примирились с дискретностью энергии, но дискретность механического действия долго оставалась непостижимой.
Работа Планка не вызвала резонанса. Долгих пять лет новорождённый квант спал в своей колыбели. Понадобился гений, чтобы превратить этого младенца в Геркулеса.
НОВЫЙ ГЕРКУЛЕС
Шли первые годы ХХ столетия. Безвестный, с трудом получивший место эксперта патентного ведомства начинающий физик Альберт Эйнштейн упорно размышлял над тайнами фотоэффекта.
Столетов и Герц, русский и немецкий физики, подробно изучили к этому времени, как свет выбивает электроны из поверхности твёрдых тел. Были установлены все подробности этого явления, названного фотоэффектом. Но никто не мог понять, почему энергия вылетающих электронов не зависит от яркости падающих лучей, а определяется только их цветом. Ведь, исходя из общепризнанной волновой теории света, можно было ожидать, что энергия электронов, выбиваемых волной, зависит от силы электрического поля волны, попадающей в место, где находится электрон. Но сила поля определяется яркостью, а не цветом.
Никто не мог объяснить и существования красной границы фотоэффекта – того удивительного факта, что для каждого вещества в спектре солнечного света существует своя индивидуальная граница. Лучи, лежащие в красную сторону от границы, никогда не вызывают фотоэффекта, а
лежащие в фиолетовую сторону от неё – легко выбивают электроны из поверхности вещества.
Это было тем более удивительно, что существование цветовой границы прямо противоречило волновой теории света, господствовавшей в науке около 300 лет. С волновой точки зрения красной границы вообще не должно было быть. Световая волна любой длины должна быть способна выбить электрон. Для этого нужно или подождать подольше или взять свет поярче. В соответствии с волновой теорией можно было ожидать «накопления» действия света. Яркий свет должен был приводить к вылету электрона скорее, чем слабый. Но ни безграничное терпение экспериментаторов, ни самые яркие источники света не могли преодолеть красной границы. И здесь суд опыта высказывался против классической теории света.
Загадку решил Эйнштейн. Он пришёл к выводу, что квантовая теория Планка, созданная только для объяснения механизма обмена тепловой энергией между электромагнитным полем и веществом, должна быть существенно расширена. Он установил, что энергия электромагнитного поля, в том числе и световых волн, всегда существует в виде определённых порций – квантов.
Так Эйнштейн извлёк квант из его колыбели и продемонстрировал людям его поразительные возможности. Представление о кванте света (фотоне) как об объективной реальности, существующей в пространстве между источником и приёмником, а не о формальной величине, появляющейся только при описании процесса обмена энергией, сразу позволило ему создать стройную теорию фотоэффекта. Это подвело фундамент и под зыбкую в то время формулу Планка.
Действительно, если свет не только излучается и поглощается квантами, но и распространяется в форме квантов – определённых порций электромагнитной энергии, то законы фотоэффекта получаются сами собой. Нужно только сделать естественное предположение, что квант-фотон взаимодействует с электроном один на один.

Энергия каждого отдельного фотона зависит только от частоты световых колебаний, то есть от его «цвета». Красному цвету соответствует почти вдвое меньшая частота, чем фиолетовому; значит, энергия красных фотонов почти вдвое меньше энергии фиолетовых фотонов.
Так как электроны удерживаются в твёрдом теле вполне определёнными для каждого вещества силами, то энергии красного фотона может не хватить для преодоления этих сил и освобождения электрона, а фиолетовый фотон легко это сделает. Так возникает красная граница, характерная для каждого вещества.
Столь же непосредственно объясняется и независимость энергии вылетевшего из вещества электрона от яркости вырвавших его лучей. Ведь энергия электрона – это остаток, разность между энергией фотона и той энергией, которую он затратил на вырывание электрона. Яркость света, то есть число квантов, попадающих в секунду на квадратный сантиметр поверхности тела, тут ни при чем. Кванты света падают независимо один от другого, и каждый поодиночке выбивает (или не выбивает) электрон. Они не могут дождаться друг друга, чтобы совместными усилиями вырвать электрон, поэтому фотоэффект не зависит ни от яркости света, ни от времени освещения.
Теряет свой мистический характер и гипотеза Планка о квантовом характере взаимодействия электромагнитного поля с веществом. До Эйнштейна эта гипотеза опиралась только на то, что выведенная на её основе формула соответствовала опыту, ликвидировала ультрафиолетовую катастрофу. Но оставалось неясным, как волна – совершенно непрерывный процесс – разбивалась на кванты в процессе взаимодействия с веществом. Теперь, когда оказалось, что электромагнитная энергия всегда существует в виде квантов, трудно предположить, что она взаимодействует с веществом не квантами, а непрерывно, как это думали до Планка.
Квантовая теория света, успешно справившаяся с загадкой фотоэффекта, отнюдь не была всесильной. Наоборот,
она была совершенно беспомощной в попытках описать ряд общеизвестных явлений. Например, таких, как возникновение ярких цветов в тонких слоях нефти, разлитой на воде, или существование предельного увеличения микроскопа и телескопа.
Волновая же теория света, бессильная в случае фотоэффекта, легко справлялась с этими вопросами.
Это вызвало непонимание и длительное недоверие к квантовой теории света. Её не принял и отец квантов – Планк. Даже в 1912 году, представляя уже знаменитого Эйнштейна в Прусскую академию наук, Планк и другие крупнейшие немецкие физики писали, что ему не следует ставить в упрёк гипотезу световых квантов!
Сам Эйнштейн не придавал трагического значения этому противоречию. Наоборот, он считал его естественным, отражающим сложный, многогранный (мы сказали бы – диалектический) характер природы света. Он считал, что в этом проявляется реальная двойственная сущность света и что это лежит в природе вещей. А постоянная Планка играет существенную роль в объединении волновой и квантовой картины. Она иллюстрирует собой союз волн и частиц.
Как мы увидим позже, распространив эти идеи Эйнштейна на микрочастицы, французский физик Луи де Бройль заложит основы волновой механики – одного из краеугольных камней фундамента современной квантовой физики.
При создании теории фотоэффекта и гипотезы световых квантов проявилась особенность гения Эйнштейна – вместо введения частных гипотез, отвечающих на конкретные вопросы, давать революционные решения, одновременно проясняющие множество сложных и разнообразных проблем.
Эта черта во всём блеске проявилась в основном деле жизни Эйнштейна – в создании теории относительности, приведшей к революции в современной науке.