Глава 7. 2 Закон энтропии

Светлова Рина
Закон энтропии

В восьмом принципе мы рассмотрим механизм уничтожения систем, неспособных эволюционировать. Этот механизм основан на возрастании энтропии вокруг развивающихся систем. Для того чтобы разобраться с действием этого механизма, необходимо отметить, что рассматривать его следует только в совместном взаимодействии системы и надсистемы, в терминах “внутренняя среда и окружающая среда”. Понятие внутренней среды системы вряд ли нуждается в какой-то конкретизации. А вот понятию окружающей среды нужно дать следующее определение. Под окружающей средой будем понимать совокупность всех взаимодействующих систем, входящих в надсистему. Поскольку система является частью будущей надсистемы,  и занимает пространство, принадлежащее ей, то окружающая среда является внутренней средой самой надсистемы. Поэтому то, что происходит вокруг системы, совсем не безразлично для  надсистемы, т.к. имеет непосредственное к ней отношение.
Интеграция системы адекватна понятию самоорганизации. Объединение системы со своим противоположным свойством переводит ее из неравновесного состояния в равновесное или из непроявленного состояния в проявленное.

Главной особенностью, которая отличает полученные холономные системы, является низкая энтропия внутренней среды. Понятие энтропии вводится только на эволюционном пути развития систем. По определению эволюционных процессов интеграция противоположностей в исходное целое сопровождается упорядочиванием внутренней структуры. 
Мы уже установили, что для обеспечения энергетической стабильности в конструктивных  процессах им сопутствуют некоторые дезорганизационные процессы. Поэтому проявленная необходимость обеспечения организации системы некой дезорганизацией и обусловлена в восьмом принципе.  В принципе, тезис о том, что любое созидание оплачивается разрушением, отнюдь не нов. Но он станет более понятным, если сформулировать его в следующем виде: организация внутренней структуры системы сопровождается дезорганизацией внутренней структуры надсистемы, т.е. разрушением окружающей среды. Этот тезис подразумевает, что созидание первично и является причиной разрушения окружающей среды. Таким образом, причиной повышения энтропии окружающей среды является необратимость эволюционных процессов самоорганизации, которые сопровождаются понижением энтропии внутренней среды системы.


О том, что энтропия в природе все время возрастает, было установлено еще в 19 веке в виде знаменитого второго начала термодинамики. Чаще всего второе начало термодинамики звучит так: всякое изменение состояния системы самопроизвольно может происходить лишь в сторону увеличения энтропии. Открытие второго начала термодинамики привнесло в физическую науку представление об эволюции как о движении от абсолютной организованности к полному хаосу или полному рассеянию энергии во Вселенной.
Однажды в одной очень умной книге я прочитала, что американские студенты-физики, чтобы лучше помнить законы термодинамики, заучивают следующую фразу: «Если первый закон утверждает, что вы не можете выиграть, то второй закон говорит, что у вас даже нет шанса остаться при своих».

До сих пор энтропию мы рассматривали как количественную меру хаоса, не вводя никаких формул. Теперь на энтропию посмотрим с механистической точки зрения, воспользовавшись именно теми понятиями, которые с самого начали и ввели понятие энтропии в физику. Снова прибегнем к примеру с газовой системой. Вероятность события, при котором все молекулы газа соберутся случайным образом в одном месте, чрезвычайно мала. Логарифм этой вероятности и будем называть энтропией системы. Наибольшая вероятность для нашего газа, наблюдается в том случае, когда все молекулы равномерно распределены по всему объему системы. Но именно такое состояние и называется равновесным, значит, система находится в равновесии, когда энтропия максимальна. Понизим температуру нашего газа. Кинетическая энергия молекул уменьшается, начинают действовать межмолекулярные силы взаимодействия, молекулы объединяются, образуется твердое кристаллическое тело. В результате все молекулы собрались в одном месте. Порядок для такого состояния системы выше, чем у газа, значит, энтропия уменьшилась. Мы имеем два процесса: установление равновесия с повышением энтропии – первый, и преобразование тепловой энергии системы в какой-нибудь другой вид энергии с понижением энтропии – второй процесс. Переход из неравновесного состояния в равновесное состояние совершается произвольно, причем он может идти как с преобразованием, так и без преобразования тепловой энергии в другие виды энергии. А обратный процесс - процесс перехода систем из равновесного состояния в неравновесное состояние – самопроизвольно идти не может. В этом и заключен основной смысл второго начала термодинамики.

Но ведь мы на Земле и в космосе повсеместно наблюдаем обратную тенденцию,  в биологических и социальных системах наблюдается именно преобразование хаоса в упорядоченные структуры.
Почему современная физика указывает только на фундаментальные законы, объясняющие причины деградационных или дезорганизационных процессов?  Почему до сих пор не найден сравнимый по фундаментальности контрфактор, который позволил бы последовательно объяснить конструктивные феномены? Парадокс между биологическим эволюционизмом и термодинамической необратимостью остается до сих пор нерешенным, хотя ушли уже в историю попытки опровержения второго начала на чисто физической основе. Но все же большие трудности, которые возникают в области термодинамики и, особенно, в наиболее важных случаях открытых систем, включающих живое вещество, служит поводом к ограничению второго начала.

Причем фактические противоречия между реальными процессами самоорганизации систем и законом возрастания энтропии во внешней среде отсутствуют. Не обнаруживается  нарушений термодинамических законов и в связи с активностью живых организмов, поскольку энтропия отходов всегда превышает энтропию поступающих веществ. Это свидетельствует в пользу того, что конструктивные феномены, определяющие внутреннюю самоорганизацию систем, опосредуются процессами рассеяния энергии в окружающей среде. Объяснить возникший  парадокс между восходящими тенденциями эволюционного развития в биологии, обществоведении и нисходящим направлением эволюции, обусловленным вторым началом термодинамики, не возможно вне единства системы и надсистемы. Даже в самых простых формулировках, дающих определение понятию необратимых процессов, можно увидеть явное указание на этот факт: “необратимыми называются такие процессы, которые могут самопроизвольно протекать только в одном направлении; в обратном направлении они могут протекать только как одно из звеньев более сложного процесса”. Этот более сложный процесс, как правило, и связан с функциональными действиями надсистемы.
Таким образом, законы количественного изменения энтропии нужно рассматривать только на уровне взаимодействий системы и надсистемы. Если до сих пор наши основные принципы описывали иерархичность взаимоотношений,  при которых только изменения в надсистеме вызывали соответствующие изменения в системе, то теперь появляется обратная связь, и изменения в системе также вызывают ответные реакции  в надсистеме. Теперь любые процессы, происходящие в системе, будут иметь определенный отклик в надсистеме, что в основном объясняется  нелокальностью интегральной структуры и целевой детерминацией внутренних процессов системы. Как видим, в этом случае еще лишний раз подтверждается, что сама интегральная структура мироздания играет в процессах эволюции главенствующую роль. И никакими другими факторами вы не сможете объяснить парадокс между восходящими тенденциями эволюционного развития в биологии, обществоведении и нисходящим направлением эволюции, обусловленным вторым началом термодинамики.
В этом случае второе начало можно рассматривать, как частный случай более общего закона, который гласит: процессы понижения энтропии внутренней среды и повышения энтропии окружающей среды, которые сопровождают самоорганизацию системы, взаимно дополняют, определяют и обусловливают друг друга. Этот закон в дальнейшем будем называть законом сохранения энтропии. Поскольку насколько уменьшится энтропия системы, настолько увеличится энтропия в надсистеме.

Другими словами закон энтропии можно сформулировать и так: понижение энтропии внутри системы при ее самоорганизации сопровождается повышением энтропии в окружающей среде. Обратное утверждение не верно, т.е. повышение энтропии в окружающей среде не ведет к понижению энтропии внутренней среды. В этом случае закон энтропии устанавливает прямую однозначную зависимость между причиной – самоорганизацией системы и следствием – изменением энтропии внутри и снаружи неравновесной системы. Вследствие необратимости эволюционных процессов из этого закона можно сделать еще один вывод: целенаправленное разрушение окружающей среды сопровождается разрушением внутренней структуры системы, вызвавшей это разрушение.

Механизм действия закона энтропии в данном случае сводится к следующему. Если система производит в окружающей среде какие-либо разрушительные действия, то со стороны надсистемы возникает ответная реакция, направленная на восстановление причиненного ущерба. Процесс восстановления, сопровождаемый теперь понижением энтропии в окружающей среде, должен быть оплачен принудительным повышением энтропии в системе, которая произвела эти разрушения. Поскольку здесь затронуты интересы надсистемы, предусматривающие сохранения ее целостности, то в самой системе через интегральную структуру включается механизм действия обратных связей в подсистеме, регулирующей функции контроля. Потому что именно здесь на этом уровне и происходит накопление той самой энтропии, которую произвела система. Причем как видно, количество ее будет удвоено за счет возвращения произведенной энтропии из внешней среды и за счет самого процесса возврата, который тоже самопроизвольно происходить не может, а только с повышение энтропии внутри системы. Управление включением подобного механизма обусловлено детерминизмом интегральной структуры и опосредствовано функцией целеполагания, которая в данном случае защищает интересы надсистемы.

Конструктивные феномены, определяющие внутреннюю самоорганизацию систем, описаны в 7 принципе. Каждая системная функция представляет собой антиэнтропийный фактор, который участвует в процессах самоорганизации систем.
Принято считать, что действие антиэнтропийных факторов заключается в том, чтобы только противостоять разрушающему влиянию окружающей среды. На самом деле структурообразующие функции, которые отвечают за внутреннюю организацию системы, являются основной причиной повышения энтропии в системе. А действие управляющих функций не только приспосабливает окружающую среду к собственным нуждам, но в основном направлено на уменьшение энтропии на своем контролирующем уровне. Поскольку большое количество накопленной энтропии здесь может привести систему к самоуничтожению. Такие процессы будут успешными только в том случае, если система постоянно способна уменьшать энтропию вокруг себя.

Таким образом, из закона энтропии можно сделать еще один вывод. Система будет уничтожена в любом случае, если она не способна к самоорганизации, к эволюционным преобразованиям с соблюдением основных ее критериев. Поэтому для системы есть единственный путь – эволюционный, это значит, что в этом мире невозможно выжить, если не двигаешься вверх, даже простая остановка в развитии может привести к уничтожению.



Девятый принцип


Мы уже говорили о том, что для полноценного развития систем возможность появления каких-то новых не запрограммированных возможностей принципиально важна. Интеграция исходной целостности с приобретением новых свойств есть одно из неоспоримых преимуществ такого типа эволюции. Поэтому в эволюционное развитие систем была введена случайная компонента, которая определяет порождение новых состояний.
В этом случае для большинства систем целевая причина эволюции обретает статус скрытого параметра, и свобода выбора теперь осуществляется в условиях неопределенного будущего. Поэтому на передний план в эволюционном развитии выступают внутренние побудительные мотивы системы, ее предшествующее состояние и характер взаимодействия с окружающей средой. Отсутствие конкретных знаний об эволюционной цели развития заменяется в данном случае вероятностным характером “попадания” в цель.
Таким образом, в девятом принципе закладывается вероятностно-статистический принцип детерминации. Возможность статистического способа достижения целей эволюции основывается на “трех китах”, во-первых, на  бесконечном многообразии различных материальных форм, во-вторых, на возможности неоднократной попытки “попадания в цель”, в третьих, используется фактор самообучения систем, при котором каждое удачное “попадание в цель” поощряется, каждое неудачное - наказывается (по принципу действия обратных связей).

Рис.23. Усилитель отбора


Механизм действия такого способа достижения цели близок по описанию «усилителю отбора», предложенному У. Эшби еще в 50-х годах. Он назвал его усилителем мыслительных способностей. Схема показана на рисунке 23. Генератор шума поставляет «сырье» в первую ступень усилителя. Преобразователь шума 2 создает разные случайные варианты объектов отбора. В блоке 3 происходит отбор в соответствии с заложенными в устройство критериями отбора. Если результат отбора удовлетворяет критерию, срабатывает блок управления 4, открывая клапан 5 и пропуская отработанную информацию в преобразователь следующей ступени усилителя. Можно представить, что в первой ступени усилителя, куда поступают случайные буквы, происходит отбор отдельных случайно возникших слов или характерных слогов. Во второй ступени происходит отбор сочетаний слов, в третьей – отбор фраз и т.д. В процессе случайного поиска возникает как раз та информации, которая нужна системе для перевода ее в новое состояние. Этот процесс назван отбором информации из шума.

В эволюционном «усилителе отбора» роль «генератора шума», который поставляет «сырье» играет интегральная схема мироздания. Она устроена таким образом, что способна порождать бесконечно большое количество структурных форм в виде различных развивающихся систем. Роль усилителей первой, второй и т.д. ступеней играют системные функции седьмого принципа. Восьмой принцип в «усилителе отбора» не описан, но его принцип понять не сложно. В блоке 3 усилителя, в котором происходит отбор, только часть систем проходят в преобразователь следующей ступени. Большинство же систем остаются в блоке. Наступает момент, когда блок переполняется и требуется основательная его очистка. Вот тут и вступает в действие восьмой принцип, и все оставшиеся системы в блоке 3 уничтожаются.

Таким образом, первым условием 9 принципа является закон необходимого разнообразия, дающий возможность создания достаточно большого количества вариантов.
Второе условие 9 принципа – фактор самообучения систем. Основные эволюционные критерии для развивающихся систем не известны, но чтобы сократить время на поиск необходимой информации из шума, каждая ступень разбивается на ряд дополнительных уровней, на которых происходит закрепление полученных признаков. При этом каждое удачное случайно образованное сочетание поощряется, каждое неудачное наказывается.

Такой механизм можно обыграть на следующем примере. Стрелок стреляет по невидимой мишени, и где она находится ему не известно. Но каждый раз, когда попадает предельно близко к цели, он получает определенный положительный знак, но зато после этого, стреляя не в ту сторону, он получает отрицательные знаки. Поэтому третьим условием, хотя его можно назвать и вместо второго, это возможность пройти одну и туже ступень с нескольких попыток. Фактически давая возможность нашему стрелку сделать несколько выстрелов, мы тем самым значительно выигрываем во времени. В противном случае нам приходилось бы заменять каждый раз стрелка на нового, и его единственный случайный выстрел мог бы очень долгое время не давать никого результата.


 49 ступеней развития  планеты


Прогрессивная эволюция материи характеризуется тем, что в развитии планеты постепенно снизу вверх проявляются семь созидающих сил. Одну из этих сил, которая фактически сформировала окружающую физическую Вселенную в том виде, в каком мы ее знаем, мы уже рассмотрели. Эта сила, прообразом которой был исходный D-признак, завершив процесс холономной интеграции, полностью вошла всеми своими исходными компонентами в единую целостность, называемую Вселенной. Как было показано ранее, в этом процессе участвуют производные четвертого и более высоких порядков. Интеграция с субъектным свойством, определяемым как Природа, создало материальную Вселенную со всеми действующими в ней физическими законами, Солнечную систему, нашу планету, которая стала первым объектом, участвующим в дальнейшей эволюции. Можно считать, что Природа, как один из аспектов субъективной реальности, устанавливает созидающие силы, определяющие образование, развитие и длительное существование физической материи. Завершение интеграции на уровне производных четвертого порядка определило существование корпускулярной материи, которая продолжила дальнейший путь интеграции на уровне третьих производных.

Третьи частные производные были определены как основные антиэнтропийные функции F1 - F7, где к седьмой функции F7 как раз и относится образование физического тела планеты.
Интеграция с субъектными свойствами F6, F5, определяемых третьими производными субъективной реальности по U-признаку, дала возможность существованию всех живых существ. Это в свою очередь  наделило эволюционирующий объект – планету  двумя оболочками, представляющими растительный и животный мир, объединяемых термином биосфера. Биосфера, являясь мощной антиэнтропийной созидающей силой, преобразующей облик планеты, обозначила следующий очередной этап в эволюции планеты.
 Этот следующий этап эволюции связан с интеграцией объекта - биосферы с субъектным свойством, определяемым по S-признаку, который в настоящий момент  происходит на основе человека разумного (интеграция с F4).

Окончательная интеграция с последним аспектом субъективной реальности, происходящим также на уровне третьих частных производных (интеграция с F3, F2, F1), определит самую мощную и активную силу во Вселенной - силу сознания. Человек, обладающей подобной силой, по своим возможностям станет практически всемогущим.

Каждый из семи уровней творения, благодаря 8 и 9 принципу делятся еще на 7 подуровней,  которые мы теперь будем называть ступенями. В результате этого, в процессе эволюции можно выделить 49 ступеней. Эволюционирующие системы, последовательно проходя все эти ступени, осваивают определенный набор функций, который присущ каждой из них. Поэтому, рассматривая ход эволюции Земли, мы будем последовательно разбирать процессы, происходящие на каждой из них.

Дальше мы рассмотрим подробно интеграцию с каждым из семи функциональных свойств, которые обусловили определенные происходящие события в ходе эволюции планеты.