Второе поколение нанотехнологии

Генадийс Москвинс
ЧАСТЬ ПЕРВАЯ.

Глава 1.


1.4. Белковые наномашины


    Гормоны белка и ферменты выборочно прилипают к другим молекулам. Фермент изменяет структуру цепи,затем идёт дальше - гормон воздействует на поведение цепи только пока оба остаются связанными вместе.Ферменты и гормоны могут быть описаны в терминах механики, но их поведение лучше описывается в химических терминах. Но другие белки выполняют простые механические функции. Некоторые тянут и толкают, некоторые действуют как шнуры или распорки, и части некоторых молекул являются превосходными подпорками.

    Механизм мускула, например, имеет наборы белков, которые захватывают "веревку" (также сделанную из белка), тащат её, потом отходят, чтобы захватить новую. Во всех случаях, когда вы двигаетесь, вы используете эти машины. Амёбы и человеческие клетки двигаются и изменяют форму, используя волокна и палочки, которые действуют как мускулы и кости молекул. Реверсивный, с изменяемой скоростью двигатель толкает бактерию в воде, поворачивая пропеллеры в форме спирали. Если любитель бы мог построить миниатюрные автомобильчики вокруг такого двигателя, несколько миллиардов миллиардов помещались бы в карман, а через ваш самый тонкий капилляр могла бы быть построена 150—полосная магистраль.

      Простые молекулярные устройства комбинируются для формирования системы,похожей на промышленные машины. В 1950—ых годах инженеры разрабатывали станки, которые режут металл под контролем перфорированной бумажной ленты. Полтора столетия ранее Джозеф-Мэри Жаккард построил ткацкий станок, который ткал сложные рисунки под контролем последовательности перфорированных карт. Однако более трёх миллиардов лет до Жаккарда, клетки разработали механизм рибосомы. Рибосомы доказали, что наномашины, построенные из белка и РНК, могут запрограммироваться на построение сложных молекул.Теперь рассмотрим вирусы. Один вид, "T4 phage", действует подобно шприцу с пружиной и напоминает что-то из промышленного каталога запчастей. Он может прилепляться к бактерии, пробивать отверстие и вводить вирусный ДНК (да, даже бактерии страдают заразными болезнями).

     Подобно всем организмам, эти вирусы существуют потому, что они довольно стабильны и хорошо умеют делать копии себя. В клетках или нет, наномашины подчиняются универсальным законам природы. Обычные химические связи держат их атомы вместе, и обычные химические реакции (управляемые другими наномашинами) их собирают. Молекулы белка могут даже соединяться для образования машин без специальной помощи, движимые только тепловым возбуждением и химическими силами. Перемешивая вирусные белки (и ДНК, которые они обслуживают) в испытательной пробирке, молекулярные биологи собирали работающие вирусы T4. Это умение удивительно: представьте себе, что вы складываете части автомобиля в большую коробку, встряхиваете её, и когда заглядываете внутрь — обнаруживаете там собранный автомобиль!

     Однако этот вирус Т4 — только один из многих самособирающихся структур. Молекулярные биологи разобрали механизм рибосомы на пятьдесят отдельных белков и молекул РНК и потом поместили их в испытательную пробирку, и они образовали работающую рибосому снова.Чтобы видеть,как это получается, вообразите различные цепи белков T4, плавающие в воде. Каждый вид белка сворачивается и образует кусок со специфическими для него выпуклостями и впадинами, покрытый характерными наборами из молекул жира, воды и электрическим зарядом. Представьте их себе гуляющими свободно и поворачивающими, толкаясь от температурных вибраций окружающих молекул воды. Время от времени их пары ударяются, потом расходятся. Иногда пара соударяется так, что выпуклости одного подходят под впадины другого и клейкие участки соответствуют друг другу. Тогда они притягиваются друг к другу и прилипают.

       Таким образом, белок добавляется к другому белку и образует части вируса, а части собираются и образуют целое. Инженеры по белкам не будут нуждаться в наноманипуляторах и нанорычагах, чтобы собирать сложные наномашины. Однако крошечные манипуляторы будут полезны, и они будут построены. Точно так же, как сегодняшние инженеры строят такие сложные машины как рояли и манипуляторы робота из обычных моторов, подшипников и движущихся частей, завтрашние биохимики будут способны использовать молекулы белка как двигатели, подшипники и движущиеся части, чтобы строить манипуляторы роботов, которые сами будут способны манипулировать отдельными молекулами.


1.5. Наноконструирование с помощью белка


     Насколько далека от нас такая способность? Некоторые шаги уже сделаны, но остаётся ещё много работы. Биохимики уже нанесли на карту структуры многих белков. С помощью механизмов гена, дающих возможность записывать ленты ДНК, они могут направить клетки на строительство любого белка, они могут разработать цепи, которые будут сворачиваться в белки нужной формы и с требуемыми функциями. Силы, которые сворачивают белки, слабы, а число возможных способов, которыми белок может свернуться — астрономическое, поэтому разработать большие белки с самого начала непросто. Силы, которые удерживают белки вместе, чтобы образовать сложные машины, — те же самые, которые вначале сворачивают цепи белков.

     Отличающиеся формы и виды прилипания аминокислот — молекулярные "бусинки", формирующие цепи белков, — заставляют каждую цепь белка сворачиваться особым образом и образовывать объект определённой формы. Биохимики изучили правила, которые дают понятие о том, как цепочка аминокислот может сворачиваться, но эти правила не очень твёрдые. Попытка предсказать, как цепь будет сворачиваться, подобна попытке разгадать кроссворд. Но этот кроссворд надо разгадать без заранее напечатанной формы, которая бы позволяла проверить, правилен ли ответ, и с частями, которые могут соответствовать друг другу почти так же хорошо (или плохо) многими различными способами, причем все ответы , кроме одного, будут неправильными.

     Неправильное начало может занять большую часть времени жизни, а правильный ответ так и не будет распознан. Биохимики, используя лучшие компьютерные программы, имеющиеся на сегодняшний день, всё же не могут предсказывать, как длинный естественный белок будет на самом деле сворачиваться, и некоторые из них уже отчаялись научиться разрабатывать молекулы белка в ближайшем будущем. Однако большинство биохимиков работают как ученые, а не как инженеры. Они работают над возможностью предсказывать, как будут сворачиваться естественные белки, а не над проектированием белков, которые будут предсказуемо сворачиваться.

     Эти задачи могут выглядеть подобными, но они очень отличаются: первая — задача научная, вторая — конструкторская. Почему естественные белки сворачиваются таким образом, который учёные находят лёгким для предсказания? Всё, что природа требует, — это чтобы они на самом деле сворачивались правильно, а не чтобы они сворачивались способом, очевидным для людей. Можно было бы разрабатывать белки с нуля, с тем чтобы сделать их сворачивание более предсказуемым. Карл Пабо, пишущий в журнале Природа, предложил стратегию разработки, основанную на понимании этого, и некоторые биохимические инженеры разработали и построили короткие цепи из нескольких десятков кусочков, которые сворачивались и прилипали к поверхности других молекул так, как планировалось.

     Они разработали с нуля белок со свойствами мелиттина — токсина пчелиного яда. Они модифицировали существующие ферменты, изменяя их поведение предсказуемым образом. Наше понимание белков растёт с каждым днём. В 1959, согласно биологу Гарретту Хардину, некоторые генетики назвали генную инженерию невозможной; сегодня это индустрия. Биохимия и автоматизированное проектирование сейчас — бурно развивающиеся области, и как писал Фредерик Блаттнер в журнале Science, "программы по игре в шахматы уже достигли уровня примерно мастера международного класса. Возможно, решение проблемы свёртывания белков ближе, чем мы думаем".

      Вильям Растеттер из Genentech пишет в "Прикладную биохимию и биотехнологию" и спрашивает: "Как далеко от нас отстоит разработка и синтез ферментов с нуля? Десять, пятнадцать лет?" Он отвечает: "Может быть, даже быстрее". Форрест Картер из Военно—морской научно—исследовательской лаборатории США, Ари Авирам и Филипп Сеиден из IBM, Кевин Улмер из корпорации "Genex", а также другие исследователи университетских и промышленных лабораторий по всему земному шару уже начали теоретическую работу и эксперименты, ставящие целью разработку молекулярных переключателей, устройств памяти и других структур, которые могли бы быть встроены в компьютер, основанный на белках.

      Американская военно—морская научно-исследовательская лаборатория США провела два международных семинара по молекулярным электронным устройствам, а заседание, спонсируемое Национальным обществом науки США, рекомендовало поддержку фундаментальных исследований, нацеленных на разработку молекулярных компьютеров. Япония, по сообщениям, начала программу на много миллионов долларов, имеющую цель разработку самособирающихся молекулярных двигателей и компьютеров, а корпорация VLSI Research Inc. Сана Джоуза, сообщила, что "Похоже, что погоня за биочипами [ещё один термин для молекулярных электронных систем] уже началась".

      NEC, Hitachi, Toshiba, Matsushita, Fujitsu, Sanyo-Denki и Sharp уже предприняли полномасштабные исследовательские усилия по биочипам для биокомпьютеров. Биохимики имеют другие причины хотеть освоить искусство проектирования белка. Новые ферменты обещают выполнять грязные и дорогие химические процессы более дешево и чисто, а новые белки предложат целый спектр новых инструментов для биотехнологов.  Мы уже на пути к разработке белков, а Кевин Алмер замечает в цитате из Science, с которой начинается эта глава, что эта дорога ведёт к более общей возможности для молекулярного инжиниринга, который бы позволил нам структурировать материю атом за атомом.


1.6. Второе поколение нанотехнологии


    Несмотря на универсальность, белок имеет недостатки как технический материал. Белковые машины перестают функционировать при высушивании, замерзают при охлаждении и свариваются при нагревании. Мы не строим машины из плоти, волос и желатина. За многие столетия мы научились использовать свои руки из плоти и костей, чтобы строить машины из дерева, керамики, стали и пластмассы. Аналогично мы будем поступать в будущем.

    Мы будем использовать протеиновые машины, чтобы строить наномашины из более прочного вещества, чем белки.Как только нанотехнология двинется дальше использования белков, она будет становиться более обычной с точки зрения инженера. Молекулы будут собираться подобно компонентам набора монтажника, а хорошо связанные части будут оставаться на своих местах. Так же как обычные инструменты строят обычные машины из частей, так же и молекулярные инструменты будут связывать молекулы так, чтобы образовывать крошечные двигатели, моторы,рычаги,обшивки и собирать их в сложные машины. Части,содержащие только несколько атомов, будут бугристыми, но инженеры могут работать с бугристыми частями, если они имеют гладкие подпорки, их поддерживающие.

      Достаточно удобно некоторые связи между атомами делают прекрасные подпорки, часть может быть установлена посредством единственной химической связи, которая будет позволять поворачивать её свободно и плавно. Так как подпорка может быть сделана с использованием только двух атомов (и поскольку для движущихся частей нужно лишь несколько атомов), наномашины могут на самом деле иметь механические компоненты размера молекулы.

     Как эти усовершенствованные машины будут построены? За эти годы инженеры существенно улучшили технологию. Они научились использовать металлические инструменты для превращения металла в более совершенные инструменты, и использовать компьютеры, чтобы проектировать более совершенные компьютеры. Они аналогично будут использовать белковые наномашины, чтобы строить более совершенные наномашины. Ферменты указывают путь: они собирают большие молекулы, "выхватывая" маленькие молекулы из воды, в которой они находятся, и удерживают их вместе так, что образуются связи. Ферменты собирают этим способом ДНК, РНК, белки, жиры, гормоны и хлорофилл — на самом деле, практически весь спектр молекул, обнаруживаемых в живых организмах.

     Далее инженеры—биохимики будут строить новые ферменты, чтобы собрать новые структуры атомов. Например, они могли бы делать ферментоподобную машину, которая будет присоединять углеродистые атомы к маленькому пятнышку, слой на слой. Будучи правильно связаны, атомы будут наращиваться и формировать прекрасное, гибкое алмазное волокно, более чем в пятьдесят раз прочнее, чем алюминий того же веса. Аэрокосмические компании будут выстраиваться в очередь, чтобы покупать такое волокно тоннами, чтобы делать детали с улучшенными характеристиками (это показывает только одну маленькую причину, почему конкуренция в военной сфере будет двигать молекулярную технологию вперёд,как она двигала многие сферы в прошлом).

     Но действительно большой прогресс будет тогда, когда белковые машины будут способны делать структуры более сложные, чем простые волокна. Эти программируемые белковые машины будут походить на рибосомы, программируемые РНК, или старое поколение автоматизированных станков, программируемое перфорированными лентами. Они откроют новый мир возможностей, позволяя инженерам избежать ограничения белков для построения прочных компактных машин прямым проектированием.

     Проектируемые белки будут расщеплять и соединять молекулы, как это делают ферменты. Существующие белки связывают множество меньших молекул, используя их как химические инструменты, заново проектируемые белки будут использовать все эти инструменты и т.д. Далее, органические химики показали, что химические реакции могут приносить замечательные результаты, расставляя молекулы по нужным местам даже без наномашин. Химики не имеют никакого прямого контроля над кувыркающимися движениями молекул в жидкости, поэтому молекулы свободны реагировать любым образом, которым они могут, в зависимости от того, как они сталкиваются.

      Однако химики тем не менее добиваются, чтобы реагирующие молекулы образовывали правильные структуры, такие как кубические или двенадцатигранные молекулы, и образовывать структуры, выглядящие невероятно, такие как молекулярные кольца с высоконапряжёнными связями. Молекулярные машины будут иметь ещё большую неустойчивость в образовании связей, потому что они могут использовать подобные молекулярные движения для образования связей, но они могут выполнять эти движения такими способами, какими не могут химики. Действительно, поскольку химики ещё не могут направить молекулярные движения, они редко способны собирать сложные молекулы в соответствии с определёнными планами. Самые большие молекулы, которые они могут делать с определенными сложными структурами, - это линейные цепи.
 
     Химики формируют эти структуры (как в механизмах гена), добавляя молекулы по одной последовательно к растущей цепи.Только с одним возможным участком связывания в цепи они могут быть уверены,что добавили следующую часть в правильном месте. Но если округленная, бугристая молекула имеет, скажем, сотню водородных атомов на своей поверхности, как химики могут отколоть только один специфический атом (5 атомов вверх и 3 атома по диагонали спереди на выпуклости), чтобы добавить что-либо на его место? Смешивание вместе простых химикалий редко сделает эту работу, поскольку маленькие молекулы редко могут выбрать специфические места,с которыми надо реагировать в больших молекулах.

      Но протеиновые машины будут более избирательными.Гибкая, программируемая белковая машина схватит большую молекулу (объект работы), в то время как маленькая молекула будет установлена именно напротив правильного места. Подобно ферменту, она тогда она свяжет молекулы вместе. Привязывая молекулу за молекулой к собираемому куску, машина будет собирать всё большую и большую структуру, в то время как будет сохраняться полный контроль над тем, как его атомы упорядочены. Это есть ключевое умение, которым не обладают химики. Подобно рибосомам, такие наномашины могут работать под управлением молекулярных лент. В отличие от рибосом, они будут иметь дело с широким разнообразием маленьких молекул (не только аминокислот) и присоединять их к собираемому объекту не только в конце цепи, но и в любом желаемом месте.

      Белковые машины, таким образом, объединят расщепляющие и склеивающие способности ферментов с возможностью программирования рибосом. Но в то время как рибосомы могут строить только неплотные структуры белка, эти белковые машины будут строить маленькие, твердые объекты как из металла, керамики или алмаза — невидимо маленькие, но прочные. Так как наши пальцы из белковой плоти подвержены ушибам или ожогам, мы обращаемся к стальным клещам. Там, где белковые машины, вероятно, могут быть разрушены и распадутся, мы обратимся к наномашинам, сделанным из более твердого материала.


(Peer-reviewer Prof.Dr.E.Spakovica)