Молекулярная технология

Генадийс Москвинс
ЭРА НАНОТЕХНОЛОГИЙ




Глава 1.МАШИНЫ СТРОИТЕЛЬСТВА.

* Два стиля технологии
* Молекулярная технология сегодня
* Существующие белковые машины
* Конструирование с помощью белков
* Второе поколение нанотехнологии
* Универсальные ассемблеры
* Какие будут выводы?
* Нанокомпьютеры
* Дизассемблеры
* Обновлённый мир

Конструирование белка представляет первый существенный шаг к более общей возможности молекулярного конструирования, которая позволила бы нам структурировать материю атом за атомом. (Кевин Алмер, директор по перспективным исследованиям корпорации "Genex")

     Уголь и алмазы,песок и чипы компьютера,рак и здоровая ткань - на всём протяжении истории, в зависимости от упорядочения атомов, возникало дешевое или драгоценное, больное или здоровое.Упорядоченные одним образом, атомы составляют почву, воздух и воду. Упорядоченные другим, они составляют спелую клубнику. Упорядоченные одним образом, они образуют дома и свежий воздух. Упорядоченные другим, они образуют золу и дым.Наша способность упорядочивать атомы лежит в основе технологии. Мы ушли далеко в своей способности упорядочивать атомы, от заточки кремня для наконечников стрел до обработки алюминия для космических кораблей.

     Мы гордимся нашей технологией,нашими лекарствами, спасающими жизнь, и настольными компьютерами. Однако наши космические корабли всё ещё грубы, наши компьютеры пока ещё глупые, а молекулы в наших тканях всё ещё постепенно приходят в беспорядок, вначале разрушая здоровье, а затем и саму жизнь. При всех наших успехах в упорядочении атомов мы всё ещё используем примитивные методы упорядочения. При нашей имеющейся технологии мы всё ещё вынуждены манипулировать большими, плохо управляемыми группами атомов.

     Но законы природы дают много возможностей для прогресса, и давление мировой конкуренции даже теперь толкает нас вперед. Хорошо это или плохо, но самое большое технологическое достижение в истории всё ещё нас ожидает впереди.


Два типа технологий


    Наша современная технология основывается на древней традиции. Тридцать тысяч лет назад обтёсывание камня было высокой технологией. Наши предки брали камни, содержащие триллионы триллионов атомов, и удаляли слои, содержащие миллиарды триллионов атомов, чтобы сделать их них наконечники для стрел. Они делали прекрасную работу с мастерством, трудновоспроизводимым сегодня. Также они делали рисунки на стенах пещер во Франции распылением краски, используя свои руки и трафареты.

     Позже они делали горшки обжиганием глины, потом - бронзу, обжигая породу. Они придавали бронзе форму, выковывая её. Они делали железо, потом сталь, и придавали им форму, нагревая, выковывая и снимая стружку. Мы теперь готовим чистую керамику и более прочные стали, но мы все еще придаём им форму с помощью выковывания, снятия стружки и т.п. Мы готовим чистый кремний, пилим его в пластины и делаем рисунок на поверхности, используя крошечные трафареты и пучки света.

     Мы называем эти изделия "чипами" и считаем, что они удивительно малы, по крайней мере, в сравнении с наконечниками стрел.Наша микроэлектронная технология сумела загнать машины, столь же мощные, как компьютеры размером в комнату в начале 1950—х, в несколько кремниевых чипов в карманном компьютере. Инженеры теперь делают устройства меньшие, чем когда-либо, раскидывая группы атомов по поверхности кристалла так, чтобы образовывались связи и компоненты в одну десятую толщины тончайшего волоса. Эти микросхемы могут считаться маленькими в стандартах "каметёсов" кремня, но каждый транзистор все еще содержит триллионы атомов, и так называемые "микрокомпьютеры" все еще видимы невооружённым глазом.

     По стандартам более новой, более мощной технологии они будут выглядеть гигантскими. Древний стиль технологии, который можно проследить от чипов кремня до кремниевых чипов, обращается с атомами и молекулами в больших совокупностях. Назовём это балк-технологией (bulk — оптовый). Новая технология будет манипулировать индивидуальными атомами и молекулами, под контролем и прецизионно, — назовём такую технологию молекулярной. Она изменит наш мир в большем количестве областей, чем мы можем вообразить.

    Микросхемы имеют части, измеряемые в микрометрах, то есть в миллионных долях метра, но молекулы измеряются в нанометрах (в тысячу раз меньше). Мы можем использовать термины "нанотехнология" и "молекулярная технология" взаимозаменяемо для описания нового вида технологии. Разработчики новой технологии будут строить и наносхемы, и наномашины.


Молекулярная технология сегодня
 

     Одно из определений машины по словарю — "любая система, обычно из твердых частей, сформированных и связанных так, чтобы изменять, передавать и направлять используемые силы определенным способом для достижения определенной цели, такой как выполнение полезной работы". Молекулярные машины подходят под это определение вполне хорошо. Чтобы представить себе эти машины,нужно сначала дать наглядное представление о молекулах.

    Мы можем изобразить атомы как бусинки, а молекулы как группы бусинок, подобно детским бусам, соединённым кусочками нитки. На самом деле, химики иногда представляют молекулы наглядно, строя модели из пластмассовых бусинок (некоторые из которых связаны в нескольких направлениях чем—то, подобным спицам в наборе Tinkertoy). Атомы имеют круглую форму подобно бусинам, и хотя молекулярные связи — не кусочки нитки, наша картинка, как минимум, даёт важное представление о том, что связи могут быть порваны и восстановлены. Если атом был бы размером с маленький мраморный шарик, довольно сложная молекула была бы размером с кулак.

     Это даёт полезный мысленный образ, но на самом деле размер атома —около 1/10000 размера бактерии, а размер бактерии — около 1/10.000 размера комара. (Размер ядра атома, однако, составляет около 1/100.000 размера самого атома, разница между атомом и ядром — это разница между огнем и ядерной реакцией). Вещи вокруг нас действуют как они действуют в зависимости от того, как ведут себя их молекулы. Воздух не держит ни форму, ни объем, потому что молекулы двигаются свободно, сталкиваясь и отскакивая рикошетом в открытом пространстве.

      Молекулы воды держатся вместе в процессе перемещения, поэтому вода сохраняет постоянный объём в процессе изменения своей формы. Медь сохраняет свою форму, потому что её атомы связаны друг с другом в определённую структуру. Мы можем согнуть её или ковать её, потому что её атомы скользят друг относительно друга, оставаясь при этом связанными вместе. Стекло разбивается, когда мы ударяем по нему молотком, потому что его атомы отделяются друг от друга раньше, чем начинают скользить.

      Резина состоит из цепочек перекрученных молекул, подобно клубку веревок. Когда её растягивают и отпускают, её молекулы распрямляются и сворачиваются опять. Эти простые молекулярные схемы образуют пассивные вещества. Более сложные схемы образуют активные наномашины живых клеток.Биохимики уже работают с этими машинами, которые в основном состоят из белка — основного строительного материала живых клеток. Эти молекулярные машины имеют относительно немного атомов, и они имеют бугорчатую поверхность, подобно объектам, сделанным склеиванием вместе горстки мраморных шариков.

     Также многие пары атомов связаны связями, которые могут сгибаться и вращаться, поэтому белковые машины необычно гибки. Но подобно всем машинам, они имеют части различной формы и размеров, которые выполняют полезную работу. Все машины используют группы атомов в качестве своих частей. Просто белковые машины используют очень маленькие группы. Биохимики мечтают о проектировании и создании таких устройств, но есть трудности, которые ещё необходимо преодолеть.

     Инженеры используют лучи света, чтобы наносить схемы на кремниевые чипы, но химики вынуждены использовать намного более сложные методы, чем этот. Когда они комбинируют молекулы в различных последовательностях, у них есть ограниченный контроль над тем, как молекулы соединяются. Когда биохимикам нужны сложные молекулярные машины, они по-прежнему должны заимствовать их из клеток. Однако продвинутые молекулярные машины, в конечном счете, позволят им строить наносхемы или наномашины так же просто и непосредственно, как сейчас инженеры строят микросхемы и моечные машины. После этого прогресс станет впечатляюще стремительным.

     Инженеры — генетики уже показывают путь. Обычно, когда химики делают молекулярные цепи, называемые "полимерами", — они сваливают молекулы в сосуд, где они в жидкости сталкиваются и связываются случайным образом. Появляющиеся в результате цепи имеют различные длины, а молекулы связываются без какого—либо определённого порядка. Но в современных машинах генного синтеза генные инженеры строят более организованные полимеры — специфические молекулы ДНК, соединяя молекулы в определённом порядке. Эти молекулы — нуклеотиды ДНК (буквы генетического алфавита), и генные инженеры не сваливают их все вместе в одну кучу. Вместо этого они заставляют машины добавлять различные нуклеотиды в определённой последовательности, чтобы составить определённую фразу.

     Вначале они связывают один тип нуклеотидов с концом цепи, потом они вымывают лишний материал и добавляют химические вещества, чтобы подготовить конец цепи к связыванию со следующим нуклеотидом. Они растят цепи, нанизывая нуклеотиды по одному за раз в запрограммированном порядке. Они прицепляют самый первый нуклеотид в каждой цепи к твёрдой поверхности, чтобы удержать цепь от размывания химической средой, в которой она находится. Таким образом,они заставляют большую неуклюжую машину собирать определённые молекулярные структуры из частей, которые в сотни миллионов раз меньше, чем она сама.

     Но этот слепой процесс сборки случайно пропускает в некоторых цепях нуклеотиды. Вероятность ошибок растет, поскольку цепи становятся более длинными. Подобно рабочим, откладывающим в сторону плохие части перед сборкой автомобиля, генные инженеры уменьшают ошибки, отбраковывая плохие цепи. Далее, чтобы соединить эти короткие цепи в работающие гены (обычно длиной в тысячи нуклеотидов), они обращаются к молекулярным машинам, имеющимся в бактериях. Эти белковые машины, называемые ферментами ограничения, интерпретируют некоторые последовательности ДНК как "резать здесь". Они считывают эти участки гена контактно, прилипая к ним, и они разрезают цепь, меняя порядок нескольких атомов.

     Другие ферменты соединяют части вместе, "читая" соответствующие части как "склеить здесь", аналогично "читают" цепи выборочным прилипанием и соединяют их, изменяя порядок нескольких атомов. Используя генные машины для чтения, а ферменты ограничения для разрезания и склеивания, генные инженеры могут написать и отредактировать любую фразу ДНК, которую захотят. Но сама по себе ДНК —довольно бесполезная молекула. Она не является прочной как "кевлар", не обладает цветом как красители, не активна подобно ферменту, все же она имеет нечто такое, что промышленность готова тратить миллионы долларов, чтобы это использовать, — способность направить молекулярные машины, называемые рибосомами. В клетках молекулярные машины вначале производят транскрипцию ДНК, копируя информацию с неё на "ленты" РНК.

    Далее, подобно старым машинам, управляемым цифровым кодом, записанным на ленте, рибосомы строят белки, основываясь на инструкциях, хранящихся на нитках РНК. А уже белки полезны. Белки, подобно ДНК, походят на бугорчатые нити бусинок. Но в отличие от ДНК, молекулы белка сворачиваются, чтобы образовывать маленькие объекты, способные что—то делать. Некоторые — ферменты, машины, которые создают и разрушают молекулы (а также копируют ДНК, расшифровывают их и строят другие белки в этом же жизненном цикле).

      Другие белки — гормоны, связывающиеся с другими белками,чтобы давать сигналы клеткам изменять своё поведение.Генные инженеры могут производить эти объекты с небольшими затратами, направляя дешёвые и эффективные молекулярные машины внутрь живых организмов для выполнения этой работы. В то время как инженеры, управляющие химическим заводом, должны работать с цистернами реагирующих химических веществ (которые часто приводят атомы в беспорядок и выделяют вредные побочные продукты), инженеры, работающие с бактериями, могут заставлять их абсорбировать химические вещества, аккуратно изменяя порядок атомов, и сохранять продукт или высвобождать его в жидкость вокруг них.

       Инженеры — генетики сейчас уже научились программировать бактерии так, чтобы они создавали белки, от человеческого гормона роста до ренина, фермента, используемого при создании сыра. Фармацевтическая компания Eli Lilly (Индианаполис) сейчас продвигает на рынок хьюмулин, молекулы инсулина человека, произведённые бактериями.


Существующие белковые машины


    Эти гормоны белка и ферменты выборочно прилипают к другим молекулам. Фермент изменяет структуру цепи,затем идёт дальше:гормон воздействует на поведение цепи только пока оба остаются связанными вместе.Ферменты и гормоны могут быть описаны в терминах механики, но их поведение лучше описывается в химических терминах. Но другие белки выполняют простые механические функции. Некоторые тянут и толкают, некоторые действуют как шнуры или распорки, и части некоторых молекул являются превосходными подпорками.

    Механизм мускула, например, имеет наборы белков, которые захватывают "веревку" (также сделанную из белка), тащат её, потом отходят, чтобы захватить новую во всех случаях, когда вы двигаетесь, вы используете эти машины. Амёбы и человеческие клетки двигаются и изменяют форму, используя волокна и палочки, которые действуют как мускулы и кости молекул. Реверсивный, с изменяемой скоростью двигатель толкает бактерию в воде, поворачивая пропеллеры в форме спирали. Если любитель бы мог построить миниатюрные автомобильчики вокруг такого двигателя, несколько миллиардов миллиардов помещались бы в карман, а через ваш самый тонкий капилляр могла бы быть построена 150—полосная магистраль.

      Простые молекулярные устройства комбинируются для формирования системы,похожей на промышленные машины. В 1950—ых годах инженеры разрабатывали станки, которые режут металл под контролем перфорированной бумажной ленты. Полтора столетия ранее Джозеф-Мэри Жаккард построил ткацкий станок, который ткал сложные рисунки под контролем последовательности перфорированных карт. Однако более трёх миллиардов лет до Жаккарда, клетки разработали механизм рибосомы.

      Рибосомы доказали, что наномашины, построенные из белка и РНК, могут запрограммироваться на построение сложных молекул.Теперь рассмотрим вирусы. Один вид, "T4 phage", действует подобно шприцу с пружиной и напоминает что-то из промышленного каталога запчастей. Он может прилепляться к бактерии, пробивать отверстие и вводить вирусный ДНК (да, даже бактерии страдают заразными болезнями).

       Подобно всем организмам, эти вирусы существуют потому, что они довольно стабильны и хорошо умеют делать копии себя. В клетках или нет, наномашины подчиняются универсальным законам природы. Обычные химические связи держат их атомы вместе, и обычные химические реакции (управляемые другими наномашинами) их собирают. Молекулы белка могут даже соединяться для образования машин без специальной помощи, движимые только тепловым возбуждением и химическими силами.

       Перемешивая вирусные белки (и ДНК, которые они обслуживают) в испытательной пробирке, молекулярные биологи собирали работающие вирусы T4. Это умение удивительно: представьте себе, что вы складываете части автомобиля в большую коробку, встряхиваете её, и когда заглядываете внутрь — обнаруживаете там собранный автомобиль!

       Однако этот вирус Т4 — только один из многих самособирающихся структур. Молекулярные биологи разобрали механизм рибосомы на пятьдесят отдельных белков и молекул РНК и потом поместили их в испытательную пробирку, и они образовали работающую рибосому снова.Чтобы видеть,как это получается, вообразите различные цепи белков T4, плавающие в воде. Каждый вид белка сворачивается и образует кусок со специфическими для него выпуклостями и впадинами, покрытый характерными наборами из молекул жира, воды и электрическим зарядом.

       Представьте их себе гуляющими свободно и поворачивающими, толкаясь от температурных вибраций окружающих молекул воды. Время от времени их пары ударяются, потом расходятся. Иногда пара соударяется так, что выпуклости одного подходят под впадины другого и клейкие участки соответствуют друг другу. Тогда они притягиваются друг к другу и прилипают.

       Таким образом, белок добавляется к другому белку и образует части вируса, а части собираются и образуют целое. Инженеры по белкам не будут нуждаться в наноманипуляторах и нанорычагах, чтобы собирать сложные наномашины. Однако крошечные манипуляторы будут полезны, и они будут построены. Точно так же, как сегодняшние инженеры строят такие сложные машины как рояли и манипуляторы робота из обычных моторов, подшипников и движущихся частей, завтрашние биохимики будут способны использовать молекулы белка как двигатели, подшипники и движущиеся части, чтобы строить манипуляторы роботов, которые сами будут способны манипулировать отдельными молекулами.


Конструирование с помощью белка


     Насколько далека от нас такая способность? Некоторые шаги уже сделаны, но остаётся ещё много работы. Биохимики уже нанесли на карту структуры многих белков. С помощью механизмов гена, дающих возможность записывать ленты ДНК, они могут направить клетки на строительство любого белка, они могут разработать цепи, которые будут сворачиваться в белки нужной формы и с требуемыми функциями. Силы, которые сворачивают белки, слабы, а число возможных способов, которыми белок может свернуться — астрономическое, поэтому разработать большие белки с самого начала непросто. Силы, которые удерживают белки вместе, чтобы образовать сложные машины, — те же самые, которые вначале сворачивают цепи белков.

     Отличающиеся формы и виды прилипания аминокислот — бугорчатые молекулярные "бусинки", формирующие цепи белков, — заставляют каждую цепь белка сворачиваться особым образом и образовывать объект определённой формы. Биохимики изучили правила, которые дают понятие о том, как цепочка аминокислот может сворачиваться, но эти правила не очень твёрдые. Попытка предсказать, как цепь будет сворачиваться, подобна попытке разгадать кроссворд, но кроссворд без 3-D напечатанной формы, которая бы позволяла определить, правилен ли ответ, и с частями, которые могут соответствовать друг другу почти так же хорошо (или плохо) многими различными способами, но все кроме одного из них — неправильные.

     Неправильное начало может занять большую часть времени жизни, а правильный ответ так и не будет распознан. Биохимики, используя лучшие компьютерные программы, имеющиеся на сегодняшний день, всё же не могут предсказывать, как длинный естественный белок будет на самом деле сворачиваться, и некоторые из них уже отчаялись научиться разрабатывать молекулы белка в ближайшем будущем. Однако большинство биохимиков работают как ученые, а не как инженеры. Они работают над возможностью предсказывать, как будут сворачиваться естественные белки, а не над проектированием белков, которые будут предсказуемо сворачиваться.

     Эти задачи могут выглядеть подобными, но они очень отличаются: первая — задача научная, вторая — конструкторская. Почему естественные белки сворачиваются таким образом, который учёные находят лёгким для предсказания? Всё, что природа требует, — это чтобы они на самом деле сворачивались правильно, а не чтобы они сворачивались способом, очевидным для людей. Можно было бы разрабатывать белки с нуля, с тем чтобы сделать их сворачивание более предсказуемым. Карл Пабо, пишущий в журнале Природа, предложил стратегию разработки, основанную на понимании этого, и некоторые биохимические инженеры разработали и построили короткие цепи из нескольких десятков кусочков, которые сворачивались и прилипали к поверхности других молекул так, как планировалось.

     Они разработали с нуля белок со свойствами мелиттина — токсина пчелиного яда. Они модифицировали существующие ферменты, изменяя их поведение предсказуемым образом. Наше понимание белков растёт с каждым днём. В 1959, согласно биологу Гарретту Хардину, некоторые генетики назвали генную инженерию невозможной; сегодня это индустрия. Биохимия и автоматизированное проектирование сейчас — бурно развивающиеся области, и как писал Фредерик Блаттнер в журнале Science, "программы по игре в шахматы уже достигли уровня примерно мастера международного класса. Возможно, решение проблемы свёртывания белков ближе, чем мы думаем".

      Вильям Растеттер из Genentech пишет в "Прикладную биохимию и биотехнологию" и спрашивает: "Как далеко от нас отстоит разработка и синтез ферментов с нуля? Десять, пятнадцать лет?" Он отвечает: "Может быть, даже быстрее". Форрест Картер из Военно—морской научно—исследовательской лаборатории США, Ари Авирам и Филипп Сеиден из IBM, Кевин Улмер из корпорации "Genex", а также другие исследователи университетских и промышленных лабораторий по всему земному шару уже начали теоретическую работу и эксперименты, ставящие целью разработку молекулярных переключателей, устройств памяти и других структур, которые могли бы быть встроены в компьютер, основанный на белках.

      Американская Военно—морская научно-исследовательская лаборатория США провела два международных семинара по молекулярным электронным устройствам, а заседание, спонсируемое Национальным обществом науки США, рекомендовало поддержку фундаментальных исследований, нацеленных на разработку молекулярных компьютеров. Япония, по сообщениям, начала программу на много миллионов долларов, имеющую цель разработку самособирающихся молекулярных двигателей и компьютеров, а корпорация VLSI Research Inc. Сана Джоуза, сообщила, что "Похоже, что погоня за биочипами [ещё один термин для молекулярных электронных систем] уже началась".

      NEC, Hitachi, Toshiba, Matsushita, Fujitsu, Sanyo-Denki и Sharp уже предприняли полномасштабные исследовательские усилия по биочипам для биокомпьютеров. Биохимики имеют другие причины хотеть освоить искусство проектирования белка. Новые ферменты обещают выполнять грязные и дорогие химические процессы более дешево и чисто, а новые белки предложат целый спектр новых инструментов для биотехнологов.  Мы уже на пути к разработке белков, а Кевин Алмер замечает в цитате из Science, с которой начинается эта глава, что эта дорога ведёт к более общей возможности для молекулярного инжиниринга, который бы позволил нам структурировать материю атом за атомом.


Второе поколение нанотехнологии


    Несмотря на универсальность, белок имеет недостатки как технический материал. Белковые машины перестают функционировать при высушивании, замерзают при охлаждении и свариваются при нагревании. Мы не строим машины из плоти, волос и желатина. За многие столетия мы научились использовать свои руки из плоти и костей, чтобы строить машины из дерева, керамики, стали и пластмассы. Аналогично мы будем поступать в будущем.

    Мы будем использовать протеиновые машины, чтобы строить наномашины из более прочного вещества, чем белки.Как только нанотехнология двинется дальше использования белков, она будет становиться более обычной с точки зрения инженера. Молекулы будут собираться подобно компонентам набора монтажника, а хорошо связанные части будут оставаться на своих местах. Так же как обычные инструменты строят обычные машины из частей, так же и молекулярные инструменты будут связывать молекулы так, чтобы образовывать крошечные двигатели, моторы,рычаги,обшивки и собирать их в сложные машины. Части,содержащие только несколько атомов, будут бугристыми, но инженеры могут работать с бугристыми частями, если они имеют гладкие подпорки, их поддерживающие.

      Достаточно удобно некоторые связи между атомами делают прекрасные подпорки, часть может быть установлена посредством единственной химической связи, которая будет позволять поворачивать её свободно и плавно. Так как подпорка может быть сделана с использованием только двух атомов (и поскольку для движущихся частей нужно лишь несколько атомов), наномашины могут на самом деле иметь механические компоненты размера молекулы.

     Как эти усовершенствованные машины будут построены? За эти годы инженеры существенно улучшили технологию. Они научились использовать металлические инструменты для превращения металла в более совершенные инструменты, и использовать компьютеры, чтобы проектировать более совершенные компьютеры. Они аналогично будут использовать белковые наномашины, чтобы строить более совершенные наномашины. Ферменты указывают путь: они собирают большие молекулы, "выхватывая" маленькие молекулы из воды, в которой они находятся, и удерживают их вместе так, что образуются связи. Ферменты собирают этим способом ДНК, РНК, белки, жиры, гормоны и хлорофилл — на самом деле, практически весь спектр молекул, обнаруживаемых в живых организмах.

     Далее инженеры—биохимики будут строить новые ферменты, чтобы собрать новые структуры атомов. Например, они могли бы делать ферментоподобную машину, которая будет присоединять углеродистые атомы к маленькому пятнышку, слой на слой. Будучи правильно связаны, атомы будут наращиваться и формировать прекрасное, гибкое алмазное волокно, более чем в пятьдесят раз прочнее, чем алюминий того же веса. Аэрокосмические компании будут выстраиваться в очередь, чтобы покупать такое волокно тоннами, чтобы делать детали с улучшенными характеристиками (это показывает только одну маленькую причину, почему конкуренция в военной сфере будет двигать молекулярную технологию вперёд,как она двигала многие сферы в прошлом).

     Но действительно большой прогресс будет тогда, когда белковые машины будут способны делать структуры более сложные, чем простые волокна. Эти программируемые белковые машины будут походить на рибосомы, программируемые РНК, или старое поколение автоматизированных станков, программируемое перфорированными лентами. Они откроют новый мир возможностей, позволяя инженерам избежать ограничения белков для построения прочных компактных машин прямым проектированием.

     Проектируемые белки будут расщеплять и соединять молекулы, как это делают ферменты. Существующие белки связывают множество меньших молекул, используя их как химические инструменты, заново проектируемые белки будут использовать все эти инструменты и т.д. Далее, органические химики показали, что химические реакции могут приносить замечательные результаты, расставляя молекулы по нужным местам даже без наномашин. Химики не имеют никакого прямого контроля над кувыркающимися движениями молекул в жидкости, поэтому молекулы свободны реагировать любым образом, которым они могут, в зависимости от того, как они сталкиваются.

      Однако химики тем не менее добиваются, чтобы реагирующие молекулы образовывали правильные структуры, такие как кубические или двенадцатигранные молекулы, и образовывать структуры, выглядящие невероятно, такие как молекулярные кольца с высоконапряжёнными связями. Молекулярные машины будут иметь ещё большую неустойчивость в образовании связей, потому что они могут использовать подобные молекулярные движения для образования связей, но они могут выполнять эти движения такими способами, какими не могут химики. Действительно, поскольку химики ещё не могут направить молекулярные движения, они редко способны собирать сложные молекулы в соответствии с определёнными планами. Самые большие молекулы, которые они могут делать с определенными сложными структурами, - это линейные цепи.
 
     Химики формируют эти структуры (как в механизмах гена), добавляя молекулы по одной последовательно к растущей цепи.Только с одним возможным участком связывания в цепи они могут быть уверены,что добавили следующую часть в правильном месте. Но если округленная, бугристая молекула имеет, скажем, сотню водородных атомов на своей поверхности, как химики могут отколоть только один специфический атом (5 атомов вверх и 3 атома по диагонали спереди на выпуклости), чтобы добавить что-либо на его место? Смешивание вместе простых химикалий редко сделает эту работу, поскольку маленькие молекулы редко могут выбрать специфические места,с которыми надо реагировать в больших молекулах.

      Но протеиновые машины будут более избирательными.Гибкая, программируемая белковая машина схватит большую молекулу (объект работы), в то время как маленькая молекула будет установлена именно напротив правильного места. Подобно ферменту, она тогда она свяжет молекулы вместе. Привязывая молекулу за молекулой к собираемому куску, машина будет собирать всё большую и большую структуру, в то время как будет сохраняться полный контроль над тем, как его атомы упорядочены.

      Это - ключевое умение, которым не обладают химики. Подобно рибосомам, такие наномашины могут работать под управлением молекулярных лент. В отличие от рибосом, они будут иметь дело с широким разнообразием маленьких молекул (не только аминокислот) и присоединять их к собираемому объекту не только в конце цепи, но и в любом желаемом месте.

      Белковые машины, таким образом, объединят расщепляющие и склеивающие способности ферментов с возможностью программирования рибосом. Но в то время как рибосомы могут строить только неплотные структуры белка, эти белковые машины будут строить маленькие, твердые объекты как из металла, керамики или алмаза — невидимо маленькие, но прочные. Так как наши пальцы из белковой плоти подвержены ушибам или ожогам, мы обращаемся к стальным клещам. Там, где белковые машины, вероятно, могут быть разрушены и распадутся, мы обратимся к наномашинам, сделанным из более твердого материала.