4. 3. 027 Мазер лазер Басова, Прохорова и Таунса

Виорэль Ломов
4.3 Физика

4.3.027 Мазер — лазер Басова, Прохорова и Таунса


В 1964 г. два русских профессора — А.М. Прохоров, Н.Г. Басов и американский Ч. Таунс стали лауреатами Нобелевской премии по физике — «за фундаментальные работы в области квантовой электроники, приведшие к созданию генераторов и усилителей на основе принципа мазера — лазера».

Директор Института общей физики АН СССР, академик-секретарь Отделения общей физики и астрономии АН СССР (РАН), создатель школы физиков — Александр Михайлович Прохоров (1916—2002) занимался исследованиями в области радиофизики, физики ускорителей, радиоспектроскопии, квантовой электроники и ее приложений, линейной оптики.

Директор Физического института АН СССР, член Президиума АН СССР (РАН) — Николай Геннадьевич Басов (1922—2001) известен фундаментальными работами в области генераторов и усилителей, а также использования лазерной техники в термоядерном синтезе.

Прохоров и Басов — почетные члены многих зарубежных академий, лауреаты Ленинской и Государственной премий, пятикратные кавалеры орденов Ленина и других отечественных и зарубежных наград, дважды Герои Социалистического Труда.



Многие выпускники школ, успешно сдавшие ЕГЭ, при поступлении в вузы на вопрос «Кто изобрел лазеры?» отвечают: «Лазер». Про мазеры после этого у них не спрашивают, т.к. английский сегодняшние школяры знают лучше физики и уж тут-то точно скажут: «Мать». А ведь квантовый генератор — из разряда изобретений, что и космическая ракета или радио.



Между тремя шедеврами русской культуры: Шуховской башней, романом «Гиперболоид инженера Гарина» и «мазером — лазером» — прослеживается прямая связь.

Гиперболоид В.Г. Шухова (башня на Шабаловке) настолько потряс воображение А.Н. Толстого, что герой его романа назвал свое изобретение также «гиперболоидом». А за ним и весь читающий народ дал квантовому генератору такое же имя — «гиперболоид Гарина». Да и научное сообщество было с ним солидарно: «Игольчатые пучки атомных радиостанций представляют собой своеобразную реализацию идей «гиперболоида инженера Гарина» (академик Л.А. Арцимович).

Мазер — это квантовый генератор, излучающий когерентные (согласованные) радиоволны, аббревиатура фразы «microwave amplification by stimulated emission of radiation» («усиление микроволн с помощью вынужденного излучения»), предложенной в 1954 г. американцем Ч. Таунсом.

Лазер, соответственно, — «light amplification by stimulated emission of radiation», означающей «усиление света в результате вынужденного излучения».

В основе работы лазера лежит принцип индуцированного излучения, изучением которого в начале XX в. занимался А. Эйнштейн. Высказав гипотезу о том, что энергия света состоит из квантов, которые испускаются атомами и атомными системами при их переходах из одного энергетического состояния в другое, ученый показал, что можно согласовать вспышки излучения отдельных атомов, воздействуя на них внешним электромагнитным излучением, которое может сопровождаться при этом ослепительно яркой вспышкой монохроматического (т.е. одной длины волны) света.

В 1920 г. немецкий физик О. Штерн ввел в экспериментальную физику метод молекулярных пучков. Тогда же были разработаны теоретические представления о процессах излучения и поглощения света.

В 1939 г. советский ученый В.А. Фабрикант развил понятие вынужденного излучения, чем заложил фундамент для создания лазера.

Во время Второй мировой войны в связи с проблемами радиолокации развилась техника сверхвысоких радиочастот.

Объединение научных идей с широким использованием волн сверхвысокочастотного диапазона привело к построению теории излучения и поглощения света, созданию первого лазера и к основанию квантовой электроники как новой физической науки.

В середине 1950-х гг. профессор А.М. Прохоров и его ученик Н.Г. Басов приступили к исследованию молекулярного генератора на пучках аммиака. Ученым впервые удалось создать квантовый генератор, работающий на энергетических переходах в радиодиапазоне в молекулярных пучках. Им стал аммиачный мазер. К мазеру «в довесок» была создана и теория усилителя радиоизлучения. Так родилась квантовая электроника.

Впоследствии были созданы и другие молекулярные генераторы, например мазер на пучке молекул водорода. После завершения работ по мазерам возник вопрос о создании лазеров оптического диапазона.

Следующим важным шагом в развитии квантовой электроники стал предложенный в 1955 г. Басовым и Прохоровым метод трех уровней, позволивший использовать для этой цели оптическую накачку.

На этой основе в 1957—1958 гг. Г.Э. Сковилом и др. были созданы квантовые усилители на парамагнитных кристаллах (на рубине), работавшие в радиодиапазоне — первый т.н. твердотельный лазер.

Затем были созданы газовые лазеры на смеси изотопов гелия и неона, на углекислом газе, аргоновые, кадмиевые, эксимерные, полупроводниковые, инжекционные, на молекулах органических красителей и т.д.

Под «накачкой» понимают пропускание через лазер энергии извне. Смысл лазерного луча в том, что этот свет обладает некоей согласованностью (когерентностью), позволяющей энергию «сжать в точку» (т.н. талию луча) несравненно сильнее, нежели в луче от обычного источника света.

Кроме того лазер может излучать свет гораздо более короткими импульсами, чем обычные источники света. В лазерном луче при этом достигается колоссальная плотность энергии, соизмеримая с взрывом авиационной бомбы. Давление света, сконцентрированного на малой площадке, достигает миллиона атмосфер. Лазерным лучом можно разрезать металлический лист из самого твердого и тугоплавкого металла.

В 1964 г Прохорову, Басову и Ч. Таунсу, занимавшемуся этой же проблемой независимо от советских ученых, была присуждена Нобелевская премия по физике.

Вскоре после этого астрономы обнаружили, что некоторые из далеких галактик работают как исполинские мазеры, т.е. в лабораторных условиях Земли были воссозданы условия для генерации, которые возникают в огромных газовых облаках, размером в миллиарды километров, где источником накачки служит космическое излучение.

О применении квантовой электроники, и в частности, лазеров, можно говорить долго.

Радиоастрономия; космическая связь (исследование поверхности Луны, навигационное оборудование на ИСЗ, космических кораблях и пр.); медицина (хирургия, офтальмология и др.); технология (сварка, резка и т.д.); метрология (квантовые стандарты частоты и времени, лазерные дальномеры, системы дистанционного химического анализа, лазерной локации); измерительная техника (оптическая локации, сверхточные измерения расстояний, линейных и угловых скоростей, ускорений и т.д.).

Создание и управление высокотемпературной плазмой; лазерная спектроскопия, фотохимия, фитобиология, лазерная очистка, лазерное разделение изотопов; создание систем оптической связи и обработки информации.

Осуществление идеи голографии и голографических приборов; лазерные методы контроля состояния атмосферы, качества изделий; системы лазерной связи (наземные, подводные, космические).

Очистка зданий от поверхностных загрязнений, резка мрамора, гранита, раскрой тканей, кожи и других материалов.

Для осуществления управляемой термоядерной реакции…

Лазеры с каждым днем все более востребованы в науке и народном хозяйстве России, так же как все более актуальными становятся слова академика А.М. Прохорова, сказанные им в одном из последних своих интервью.

«— Как вы думаете, недавняя Нобелевская премия Ж.И. Алферову поможет изменить ситуацию с наукой в стране?

— Нет.

— Почему?

— Не знаю. Странные какие-то статьи появляются, что не надо быть сверхдержавой. А какой надо быть державой? Развивающейся страной, что ли, быть? Или как Люксембург? Здесь полное непонимание наверху. Ну, во-первых, о том, как заниматься наукой, в основном говорят люди, которые никогда не занимались практической наукой и не сделали ничего существенного. Некоторые выступают, что надо более узко подходить, только прикладными вопросами заниматься. Но как человек может, занимаясь только прикладными вещами, развивать в дальнейшем науку и технологии, новые направления?» (http://vivovoco.ibmh.msk.su/)