4. 3. 026 Сверхпроводимость и сверхтекучесть

Виорэль Ломов
4.3 Физика

4.3.026 Сверхпроводимость и сверхтекучесть


Математики, физики; профессора университетов; академики АН СССР (РАН), члены иностранных академий, научных обществ и университетов; лауреаты отечественных и международных премий, в т.ч. Сталинских, Государственных, Ленинских, Нобелевских; обладатели золотых медалей; кавалеры высших наград нашей и зарубежных стран; заведующие кафедрами, директора институтов; авторы фундаментальных трудов по физике, механике и математике  — Петр Леонидович Капица (1894—1984), Лев Давидович Ландау (1908—1968), Николай Николаевич Боголюбов (1909—1992), Виталий Лазаревич Гинзбург (1916—2009), Алексей Алексеевич Абрикосов (род. 1928), Лев Петрович Горьков (род. 1929) являются создателями теории сверхпроводимости и теории сверхтекучести.


О важности исследований в области сверхпроводимости и сверхтекучести говорит тот факт, что 100 лет разработок в этом направлении принесли ученым шести стран семь Нобелевских премий.

Нидерландский физик Х. Камерлинг-Оннес стал лауреатом в 1913 г.; американские — Дж. Бардин, Л.Н. Купер и Дж.Р. Шриффер в 1972 г., английский — Б.Д. Джозефсон в 1973, немецкий — Г. Беднорц и швейцарский — К.А. Мюллер в 1987 г.

Три Нобелевские премии получили наши ученые: Л.Д. Ландау в 1962 г. — «за пионерские теории конденсированной материи, в особенности жидкого гелия»; П.Л. Капица в 1978 г. — «за фундаментальные изобретения и открытия в области физики низких температур»; А.А. Абрикосов и В.Л. Гинзбург в 2003 г. — «за пионерский вклад в теорию сверхпроводников и сверхтекучих жидкостей».

По обычным для Нобелевского комитета интригам Н.Н. Боголюбов и Л.П. Горьков не были удостоены премии. От этого, правда, ценность трудов советских физиков не умалилась ни на йоту, тем паче, что именно они придали т.н. микроскопической теории сверхпроводимости-сверхтекучести на современном этапе ее развития совершенный вид.

Вопрос еще не закрыт, работы ведутся во всем мире и от ученых ожидают массу новых открытий. В частности, физики заняты созданием теории высокотемпературной сверхпроводимости (ВТСП), конечной целью которой станет получение сверхпроводников с нулевым сопротивлением току при комнатной температуре.

Что же такое сверхпроводимость и сверхтекучесть? Откроем энциклопедии и учебники для вузов.

Сверхпроводимость — физическое явление, наблюдаемое у сверхпроводников, при охлаждении их ниже критической температуры, когда электрическое сопротивление постоянному току становится равным нулю и происходит выталкивание магнитного поля из объема образца.

Это явление было открыто в 1911 г. Х. Каммерлинг-Оннесом при экспериментах на ртути, а позднее учеными разных стран на белом олове, свинце, теллуре, титане, ниобии и др. Их стали называть СП I рода.

В 1950 г. А.А. Абрикосов ввел понятие СП II рода (сплав ниобий-титан, интерметаллид ниобий-олово). В них ток протекает не по тонкому поверхностному слою, как в СП I рода, а во всем объеме. Этот класс сверхпроводников нашел в дальнейшем широкое техническое применение.

В 1938 г. П.Л Капицей было открыто явление сверхтекучести гелия Не II — когда при понижении температуры до абсолютного нуля вещество переходит в состояние квантовой жидкости и способно протекать через узкие щели и капилляры без трения (жидкий гелий поднимается по стенке вверх).

Далее теория сверхпроводимости и сверхтекучести формировались совместно, дополняя друг друга.

Развив гидродинамику квантовой жидкости, Л.Д. Ландау в 1941 г. дал объяснение сверхтекучести Не II. В.Л. Гинзбургом и Ландау была создана обобщенная феноменологическая (макроскопическая) теория сверхпроводимости (пси-теория СП), основанная на представлении сверхпроводящего конденсата с помощью волновой функции.

В середине 1950-х гг. независимо друг от друга микроскопическую теорию сверхпроводимости создали Дж. Бардин, Л. Купер, Дж. Шиффер и Н.Н. Боголюбов. По оценкам ученых, подход русского ученого был не только более точным, но и гораздо более «красивым и убедительным» (Л.Д. Ландау).

Боголюбов, в частности, установил фундаментальный факт, что сверхпроводимость можно рассматривать как сверхтекучесть электронного газа. Тем не менее теория получила название БКШ — по начальным буквам фамилий американских авторов.

К БКШ и к теории Гинзбурга — Ландау «приложил руку» академик Л.П. Горьков, разработав микроскопическое описание теории сверхпроводимости на основе математического аппарата функции Грина.

Между макроскопическим и микроскопическим подходами существенная разница. Согласно определению Боголюбова, «задачей макроскопической теории является получение уравнений типа классических уравнений математической физики, которые отображали бы всю совокупность экспериментальных фактов, относящихся к изучаемым макроскопическим объектам...

В микроскопической теории ставится более глубокая задача, заключающаяся в том, чтобы понять внутренний механизм явления, исходя из законов квантовой механики. При этом, в частности, надлежит получить также те связи между динамическими величинами, из которых вытекают уравнения макроскопической теории».

Применив к теории Гинзбурга — Ландау микроскопическое описание и заменив волновую функцию фазоволновой, А.А. Абрикосов придал теории сверхпроводимости более общий вид, что позволило применять ее для описания сверхтекучих жидкостей.

Сегодня появление сверхпроводимости объясняется образованием т.н. куперовских пар — системы частиц в электронном газе, обладающей свойствами двух электронов с противоположенными спинами. Энергия электрона переносящего заряд при этом уменьшается на порядки, и электрон перестает взаимодействовать с другими частицами в веществе.

С 1950 г. стали заниматься высокотемпературной сверхпроводимостью (ВТСП) в неметаллических системах.

В СССР теорию ВТСП разрабатывал академик В.Л. Гинзбург. Интерес к этой теории был вызван возможностью использования хладагентов с более высокой температурой кипения, чем у жидкого гелия.

С открытием в 1986 г. нового класса СП с более высокими критическими температурами (керамические материалы) к этим работам было приковано внимание не только научного, но и бизнес-сообщества, поскольку применение жидкого азота на несколько порядков удешевляло любую конструкцию, использующую СП, и обещало резко сократить потери в современных воздушных линиях электропередач и на преобразования тока, достигавшие четверти передаваемой энергии.

Сегодня сверхпроводимость нашла широчайшее применение в магнитных системах различного назначения и в электрических машинах (турбогенераторах, электродвигателях, жестких и гибких кабелях, коммутационных устройствах, магнитных сепараторах и т.п.).

Многожильные СП и сверхпроводящие катушки используются для пузырьковых водородных камер, крупных ускорителей элементарных частиц, всевозможных устройств измерения температур и давлений, расходов и уровней.

Широкое применение сверхпроводящие магниты нашли в медицине (ЯМР-томографы). Создаются изделия на основе ВТСП, применяемые в радиоэлектронных системах для детектирования, аналоговой и цифровой обработки сигналов. Строятся уникальные электромагнитные системы.

Так, например, в 1986 г. в СССР был осуществлен запуск первой в мире установки термоядерного синтеза Т-7 со сверхпроводящими катушками тороидального магнитного поля.

Помимо прочих выигрышей, применение сверхпроводимости позволяет в несколько раз уменьшать массу и габариты машин (тех же турбогенераторов) при сохранении мощности.

Разрабатываются электронакопительные системы на сверхпроводящих магнитах для регулирования пиковых нагрузок в больших электросетях, что позволяет обеспечить безопасность электроснабжения отдельных предприятий и города.

За рубежом ведутся разработки опытных образцов железной дороги со сверхпроводящей металлокерамической магнитной подвеской, охлаждаемой жидким азотом.

В Японии в 2005 г. был испытан поезд, использующий ВТСП-магниты. Поезд развил скорость более 500 км/ч.

Для создания магнитных полей в большом андронном коллайдере используются электромагнитные катушки со сверхпроводниковой обмоткой...

Практическое применение сверхтекучести при комнатных температурах дело отдаленной перспективы, хотя уже появились работы, обещающие успех и в этом направлении. Во всяком случае, ожидания специалистов радужны. Они уверяют, что это позволит передавать электричество без потерь; создать масло, которое сделает двигатели «вечными» (неизнашиваемыми); струей жидкости, как лазером, резать сталь и т.п.