Загадочная вода и дармовая энергия

В статье рассмотрены свойства воды, вызывающие удивление и не имеющие общепризнанного объяснения. Показано, что при рассмотрении ковалентных связей молекулы воды, как комбинации магнитных и кулоновских сил, свойства воды перестают быть загадочными. Объяснены эффекты получения якобы избыточной энергии в импульсных технологиях.
____________________________________________________________________;
Вода имеет огромное значение в жизни человека и в природе вообще. О воде накоплено огромное количество фактического материала, но также - и домыслов. Это вызвано обилием аномальных свойств воды. Не будем повторять всю информацию, обратим внимание лишь на те факты, в объяснении которых нет общего согласия, и на те, для которых объяснение вообще отсутствует.

Большинство исследователей, на основании множества различных наблюдений, пришло к согласию, что в составе обычной воды одновременно присутствуют две достаточно стабильные её модификации, которые, предположительно, отличаются друг от друга только молекулярной структурой.

Почему-то поиск различий в структуре воды ведется среди ассоциативных образований. Однако типов ассоциативных образований наблюдается множество, а необходимых факторов для выделения двух основных структур не проявляется, да и не очень верится, что слабые ассоциативные связи могут вызывать стойкое разделение воды на два типа.

Попытаемся в формализм химических представлений привнести долю физического смысла, который и поможет объяснить известные аномальные свойства воды. Для этого примем во внимание все имеющиеся о воде сведения, включая и те, что не признаются официальной академической наукой, но тем не менее существуют и проявляются в реальной жизни. В виду имеются некоторые результаты, полученные при разработке импульсных технологий [5], якобы позволяющих получать энергию из ничего, или, по мнению их авторов, из эфирного моря, что одно и то же.



Как известно, реакция Н1 + Н1 = Н2 идет с выделением тепла, а именно 400 кДж на 1 моль Н2 [1]. Как происходит процесс? Казалось бы, при сближении двух нейтральных атомов водорода, ничего не должно происходить до самого момента соприкосновения электронных оболочек. Но это – заблуждение, вызванное стереотипной трактовкой электронной оболочки как сферической поверхности с вероятной плотностью заряда. Границы применяемости для этой идеализации никогда и нигде не приводятся, а они, тем не менее, существуют. Дело в том, что электронной оболочки как таковой не существует – это абстракция, придуманная для удобства некоторых теоретических построений. Реально, при сближении атомов на расстояние сравнимое с их размером, необходимо каждую конфигурацию двух протонов и двух электронов сближающихся атомов рассматривать конкретно, и такой, какова она есть в данный момент.

При сближении могут возникнуть несколько типовых ситуаций, определяемых случайным взаимным расположением и характером движения двух электронов.
В одной из этих ситуаций, зеркально сближающиеся электроны имеют возможность приблизиться друг к другу гораздо ближе, чем они отделены от своих протонов, и вследствие этого начнут естественным образом тормозиться кулоновскими силами, изменяя свою траекторию так, что их столкновение исключается. Исключение столкновения – это безусловное знание. Это истина. В результате коротких, но интенсивных, циклически повторяющихся взаимодействий, сближающиеся электроны атомов, в общем случае, сформируют деформированные электронные оболочки с вихревой составляющей круговых, групповых  токов, создающих магнитные диполи, требуемой ориентации. Если эти вихревые образования имитировать электронными орбитами, то получим два параллельных круговых тока, которые будут притягиваться как магнитные диполи и одновременно отталкиваться как кулоновские заряды, формируя суммарную магнитную и кулоновскую связь с энергетической ямой, образующейся за счет различного пространственного распределения напряженностей двух типов полей.
Торможение сближающихся электронов происходит относительно друг друга и относительно своих протонов, сами же атомы (центры масс) под действием возникшего магнитного поля приобретают дополнительный встречный импульс. Сближение продолжается, пока оно не будет остановлено кулоновским отталкиванием параллельно вращающихся виртуальных зарядов (для водорода виртуальный заряд практически совпадает с реальным). Это локальное кулоновское отталкивание тоже определяется реальной геометрией атомов и возникает почти одновременно с магнитным диполем, но имеет другую пространственно-временную характеристику, позволяющую совместно с характеристикой магнитного диполя сформировать потенциальную яму. Таким образом, если атом достаточно симметричен, то магнитный диполь может создаваться в произвольной точке атома, и инициироваться, в значительной мере, внешними силами.

Работа, совершенная атомами при создании молекулы водорода, переходит в энергию синхронного противофазного колебания двух атомов, составляющих молекулу. Энергия колебаний камертонного типа вновь образованной молекулы водорода передается окружающей среде в форме теплового движения.  При этом тепла выделяется 400 кДж на 1 моль H2. Эти данные, заимствованные из квантовой теории ковалентных связей, хорошо подтверждаются на практике. В квантовой теории, выделяющаяся энергия получается как разница энергий связи для двух сменяющих друг друга состояний; физический процесс превращения потенциальной энергии связи в тепловую и электромагнитную энергии, традиционно, не приводится.

Не каждая пара молекул водорода при сближении имеет требуемое соотношение состояний электронных оболочек (включая спин электронов), большинство атомов, не удовлетворяющих требуемым условиям, не сформируют требуемых круговых токов, и просто оттолкнутся, не вступая в реакцию, что соответствует наблюдаемому вялому течению этой реакции. Малая часть атомов сформирует круговые токи противоположных направлений, и также оттолкнется.
Теория ковалентных химических связей рассматривает обобщенные электронные пары, при этом характер обобщения не конкретизируется. Судя по графическим иллюстрациям, траектории парных электронов предполагаются эллиптическими и охватывающими два атомных ядра, которые размещены в узлах эллипса. Странное представление, т.к. такой теории движения не существует. Если во второй фокус эллиптической траектории кометы поместить второе Солнце, то комета не сможет двигаться по привычному эллипсу. А электроны не смогут так двигаться вокруг двух протонов, удерживая их своим движением на постоянном расстоянии. Ковалентная связь – это фикция, порожденная в свое время недостатком знаний, и ставшая в настоящее время явной профанацией. Странно, что квантовая оптика до сих пор уживается с этой, неудачно придуманной теорией.

Если попробовать представить процесс образования молекул водорода или воды на основе обобщенных электронных пар с охватывающей траекторией движения, то он представляется весьма загадочным. Как ни примеряй, - получается, что процесс должен сопровождаться поглощением энергии, а не выделением, т.к. оба электрона связи, исходя из предлагаемого графического отображения ковалентной связи, должны переходить на орбитали с большей энергией связи.
Предлагаемый принцип магнитной связи не противоречит принятому формализму внутри атомных связей, но не принимается во внимание теоретиками химических структур, а это принуждает их изобретать надуманные конструкции, искажающие суть явлений.

Однако не будем критиковать гипотезу структуры молекулы воды на основе принятой теории ковалентных связей, а просто посмотрим, что же будет, если эти связи рассматривать как магнитные, которые только что были проанализированы на примере водорода.

Процесс образования молекулы воды будет похож на процесс образования молекулы водорода, и источник выделяющейся энергии (250 кДж на 1 моль) будет тот же.

При формировании молекулы воды с помощью магнитных связей теоретически возможны два типа молекул, определяемых взаимным направлением вращения электронов в атомах водорода воды относительно друг друга. В одном из вариантов атомы водорода в молекуле воды должны слабо взаимно притягиваться, образуя треугольную структуру с плотно сомкнутыми атомами водорода, а в другом - отталкиваться, образуя более растянутую структуру или даже нитеобразную.

В общепринятой теории межмолекулярных связей существует понятие так называемой водородной связи. Под такой связью понимается способность атомов водорода, входящих в состав некоторой молекулы, присоединять к себе атомы из состава другой молекулы. Природа этого явления в принятой теории убедительного объяснения не имеет. В случае магнитных внутримолекулярных связей такая водородная связь является естественным и прогнозируемым следствием, определяемым свойствами магнитного диполя. Сформировавшаяся магнитная связь атомов может исчезнуть только будучи замкнутой на себя, что возможно только в длинных молекулярных кольцах. В природе же, магнитный узел связи сохраняется в большинстве случаев, и ответственен за формирование не только кристаллов, но и всех твердых тел.

В пользу этого предположения свидетельствует эффект Казимира. С позиций магнитных связей эффект Казимира представляется совершенно естественным. При сближении ровных поверхностей твердых тел на достаточно малое расстояние происходит трансформация пограничных электронных оболочек, сопровождающаяся формированием слабых магнитных связей. Связи слабые по причине невозможности свободного сближения атомов. Кроме вновь образовавшихся связей на поверхности каждого твердого тела имеются свободные водородные связи. В общем случае необходимо предположить, что связей притяжения и связей отталкивания будет образовано равное количество. Эти связи в начальный момент создадут нулевое интегральное усилие. Однако локальное приложение соответствующих усилий к каждому отдельно взятому атому вызовет дополнительное сближение притягивающихся атомов, и некоторое отстранение отталкивающихся атомов. Благодаря обратной пропорциональности магнитных сил от расстояния это вызовет интегральный эффект, наблюдаемый как эффект Казимира.

Если количество формируемых положительных и отрицательных связей зависит от структуры кристаллов контактирующих тел, то эффект Казимира будет определяться суммой результатов двух различных процессов, и может быть даже отрицательным.

Какую бы модель атома ни проповедовали различные теории (модель Бора, модель Шрёдингера или другие), сферическая форма оболочек свободных атомов признается всеми. При этом, как известно, размер атома мало зависит от его порядкового номера в таблице Менделеева, т.е. от его массы.
Молекула воды, образованная на магнитной связи, в форме равнобедренного треугольника, естественным образом должна быть похожа на три почти одинаковых слепленных снежка. Шарообразная форма молекулы воды, предполагаемая в [2], представляется натяжкой. Треугольная конструкция является универсальным элементом для формирования плоской поверхностной пленки. Из почти равносторонних треугольников может формироваться поверхность жидкой воды, практически лишенная дефектов, что и обеспечивает очень высокую прочность водяной поверхностной пленки. Большое натяжение пленки обеспечивается за счет того, что равнобедренный треугольник молекулы воды в составе пленки превращается в равносторонний. Таким образом, каждая молекула пленки находится в напряженном состоянии, и создает наблюдаемое натяжение.

Во всех справочниках и учебниках геометрия молекулы жидкой воды описывается, исходя из предположения об её аналогии со структурой кристаллического льда I, в котором, как удалось установить новейшими методами, угол вершины в равнобедренном треугольнике приблизительно равен 109 угловым градусам. Присвоение этого параметра молекуле жидкой воды является произвольным допущением, которое однажды высказанное кем-то из авторитетов, превратилось в стереотип – и не обсуждается, хотя совершенно очевидно, что из молекул такой конфигурации ни одну из ажурных снежинок (явно кристаллических, и явно с шести лучевой симметрией) не сконструируешь. Конструкция снежинок требует равносторонней формы треугольника молекулы воды. Если эти два очевидных факта не превращать в парадокс, то необходимо признать, что взаимная связь атомов водорода в молекуле воды является весьма динамичной и допускает деформацию формы молекулы. Об этом же свидетельствуют установленные формы молекул воды в других, искусственно получаемых, типах льда, где угол в вершине треугольника отличается от 109 градусов.

Так почему же, все-таки, не 120 градусов? А по тому, что атом кислорода несколько больше атома водорода. Если бы было наоборот, то угол вершины был бы больше 120 градусов.

Здесь уместно вспомнить еще одну аномальную характеристику воды, как подсказку для выявления особенностей её структуры - это зависимость теплоемкости от температуры. Сравнительно высокая теплоемкость воды и наличие необычного минимума теплоемкости в области 37;С свидетельствуют о существовании некоторой дополнительной степени свободы, участвующей в тепловом движении. Не нужно быть Шерлоком Холмсом, чтобы исходя из предыдущего описания, обнаружить подозреваемого на дополнительную степень свободы. Принимая во внимание взаимную подвижность атомов водорода, вода явно представляет собою подобие акустического камертона. Как носитель кинетической энергии, такой камертон явно на особом положении. Самое главное его отличие от других степеней свободы то, что его энергетическая емкость явно ограничена, т.е. имеет насыщение. Кроме того, похоже, что имеется и порог включения этой степени свободы в тепловое движение. Характер колебаний этого камертона и обеспечивает самые загадочные свойства воды, связанные с теплоемкостью. Рассмотрим их более внимательно.

Прежде всего, наличие колебаний камертонного типа легко объясняет капиллярные аномалии воды. Вспомните детскую игрушку, где матрос, похожий на молекулу воды, взбирается вверх по веревке за счет аналогичных движений. Достаточно незначительной разницы в сцеплении разных частей молекулы воды со сторонним веществом при колебательных смещениях атомов водорода – и вода “поползет” по смачиваемой поверхности.

Достаточно очевидно, что это же колебание будет способствовать увеличению растворяющих и гидролизных свойств воды, действуя как клин с переменным углом расталкивания.

При постепенном нагревании жидкой воды, эти колебания, в качестве степени свободы теплового движения, сначала проявляют себя самым обычным образом, т.е. теплоемкость монотонно растет. Затем, при приближении размаха колебаний к 180 угловым градусам, рост её замедляется. При дальнейшем нагреве происходит самое замечательное явление: атомы водорода и кислорода в какой-то момент выстраиваются по одной прямой – и оказываются в квазиустойчивом состоянии, что приводит практически к моментальному прекращению колебаний молекулярного камертона. В этот момент удельная теплоемкость молекулы скачком уменьшается, а молекула становятся носителем потенциальной энергии, по отдаленной аналогии с арбалетом. Достаточно небольшого толчка в нужном направлении, и молекула вновь включится в тепловое движение, соответствующее вполне конкретной температуре. Если вода к моменту обратного перехода уже остыла, то импульс с малой энергией подходящего направления, может вызвать нагревание воды, соответствующее гораздо большей энергии, по сравнению с истраченной на создание импульса.
За счет статистического распределения, эффект скачка теплоемкости в природе никогда не наблюдается. А благодаря закону спектрального распределения кинетической энергии молекул, вытянутые (заряженные) молекулы в воде присутствуют постоянно, но их концентрация зависит от температуры.

Много лет назад автор данной статьи познакомился с научной публикацией, в которой обычная вода рассматривалась как смесь двух типов воды, сформированных молекулами разной структуры, одна из структур рассматривалась как нитеобразная. Автор той давней статьи (имя, к сожалению, не запомнилось) приводил данные, которые свидетельствовали, что максимальная концентрация вытянутых молекул достигается при температуре  близкой к 37 градусам Цельсия. Вытянутые молекулы воды, по мнению автора, имеют огромное значение в межклеточных биологических процессах. Именно поэтому температура большинства животных находится в диапазоне 35-42 градусов.
 
Прошло много лет, а развития этой идеи обнаружить не удается, и это странно. Приведем цитату из [3]. “Возможно, что для биосистем особенно существен механизм дальнодействия, который присущ воде, а тем более упорядоченной воде [4], то есть способность передавать энергию и с большой скоростью проводить сигналы по упорядоченным цепочкам молекул”. Эта цитата является констатацией свойств воды без указания характеристик носителя этих свойств. Можно предположить, что для подобных функций вытянутые молекулы подходят наилучшим образом. В этом случае причина нарушения работы головного мозга при ударных сотрясениях становится более понятной. При ударе, вытянутые молекулы переходят в энергетически более выгодное состояние треугольника, нарушая необходимые связи, которые мозгу приходится восстанавливать.

Молекула воды при наличии магнитной связи должна обладать естественным магнитным моментом. При протекании воды через внешнее постоянное магнитное поле, магнитные молекулы однообразно ориентируются, создавая поляризованно структурированную воду со специфическими свойствами. В некоторых справочниках этот эффект сопровождается комментарием о неизвестной природе явления, хотя в случае магнитных связей она очевидна.

Если вместо безликих ковалентных связей в молекуле воды рассматривать магнитные связи атомов, то естественная форма молекулы воды будет соответствовать округлому треугольнику и предполагает подобие углубления в его центре. Максимально плотная укладка таких молекул обеспечивается при условии совмещения каждого центрального углубления с одной из вершин другой молекулы. Логично предположить, что такая укладка реализуется при температуре, равной 4°С. Из практики известно, что лед, а следовательно и необходимые жесткие связи, такой укладки не обеспечивает. Значит, требуемые жесткие связи (в том числе кристаллические) возникают только в других, более рыхлых конфигурациях, что приводит к уменьшению удельной плотности льда.
В жидкой фазе часть молекул всегда находиться в состоянии, обеспечивающем максимальную плотность; эта часть меняется в зависимости от температуры, и при температуре 4;С, достигает своего наибольшего значения, что и обеспечивает соответствующий максимум плотности воды.
 
При замерзании воды выделяется известное количество тепла, которое достается именно окружающей воде, а не твердой структуре льда. А как и откуда это тепло возникает? Теоретическое обоснование соответствующего процесса отсутствует. Рассмотрим мысленно ситуацию, реализующуюся при замерзании в случае магнитных связей.

Уже существующая структура льда создает на своей границе, в точке присоединения следующей молекулы, направленный поток магнитного поля, и достаточно узкий. Для того, чтобы следующая молекула могла занять свое место в этой структуре, она должна иметь определенную ориентацию. Эта ориентация в жидкой воде реализуется с некоторой вероятностью. Исходя из этого, можно утверждать, что вероятность требуемого положения у молекулы, которая уже находится в точке присоединения, меньше, чем суммарная вероятность всех других положений, которых гораздо больше. Вследствие этого подходящей молекулой обычно оказывается одна из ближайших, но не самая близкая к узлу. Эта молекула, испытывая магнитное притяжение, устремляется к точке узла, расталкивая мешающие ей молекулы и сообщая им дополнительную кинетическую энергию, которую приобретает и тут же теряет сама. Такой сценарий, объясняющий возникновение теплоты при образовании льда, можно реализовать только за счет магнитных взаимодействий, позволяющих создавать узкие и достаточно протяженные магнитные силовые поля. Предположить что-то разумное на основе других моделей взаимодействий автору не удалось.

К другим необычным свойствам льда относится генерация электромагнитного излучения растущими кристаллами льда. Вот что пишет Мосин О.В. в своей статье [6]. “При этом (при замерзании, авт.) примеси скапливаются на границе твердой и жидкой сред, в виде двух слоев электрических зарядов разного знака, которые вызывают значительную разность потенциалов. Заряженный слой примесей перемещается вместе с нижней границей молодого льда и излучает электромагнитные волны”. Профессионалы, изучающие процессы излучения, могут в этом месте пополнить свою копилку знаний. Мы же, приняв к сведению сообщение Мосина О.В. об обнаруживаемом излучении, должны прикинуть, как проявят себя в этом случае магнитные связи.

Молекулы воды, формируя растущую грань ледяного кристалла, ориентированы однообразно, и в момент присоединения следующего слоя молекул совершают однонаправленные и однотипные колебания магнитных диполей (разгон и торможение), генерирующие электромагнитные волны, которые и суммируются по не синфазному закону сложения.

Как видим, с магнитными связями всё гораздо проще и нагляднее.

Квазиустойчивое состояние вытянутой молекулы должно описываться функцией-оператором типа “защелка”. Малое воздействие, снимающее действие защелки, вызывает реакцию, многократно превышающую энергию стартового воздействия. В результате такой разрядки возникает некоторое количество дополнительного тепла за счет ранее запасенного. Кроме того, в условиях процесса электролиза, при таких переходах, могут образоваться дополнительные свободные атомы водорода, формирующие газообразный атомарный водород.

Эффект импульсного извлечения дополнительной энергии из воды давно замечен умельцами-изобретателями. Оформлено уже несколько патентов и даже существуют промышленные установки [5]. Вот что пишет Канарёв Ф.М. в описании своего низко амперного электролизера (патент № 2227817) [5]. “Оказалось, что процесс электролиза может протекать при напряжении 1,5-2,0 В между анодом и катодом и силе тока 0,02 А. … Если источник постоянного тока генерирует импульсы, то выход газов увеличивается”.

Описывает Канарёв Ф.М. и импульсные нагреватели водяных отопительных батарей - это водоэлектрический генератор тепла (патент № 2258098). Так, в одном из опытов бытовая батарея нагревается до 80;С за три минуты, при этом КПД импульсной установки превышает 1000%. Нет оснований не доверять изобретателю, ведь он должен был продемонстрировать эти параметры при регистрации патента. Однако привлекает внимание одно постоянно присутствующее обстоятельство: все протокольные данные, приводимые в отчетах, получены за временной интервал опытов, не превышающий 5 мин. Конечно, изобретатели знают, что происходит за границами этого интервала; там эффект получения избыточной энергии, видимо, исчезает. Но, не зная сути явления, изобретатели надеются выяснить, и в будущем обязательно устранить мешающую причину, умалчивая этот эффект в публикациях. Однако, их надежды напрасны. Импульсные энергетические установки, работающие на воде, используют запасенную водой энергию, и аналогичны добыче воды методом стряхивания росы с кроны деревьев. Ни какого нарушения законов сохранения при получении избыточного тепла в импульсных установках не происходит, и уж точно нет и добычи энергии из эфира.

Однако, ситуация с электролизом воды несколько отличается. В случае электролиза, возможно (и желательно) использование проточной воды. Это приводит практически к полной аналогии с водяными мельницами, и вполне возможен существенный экономический эффект.

При нагревании технической воды, используемой в открытом контуре, тоже можно получить значительный экономический эффект. Иногда можно организовать стабильный импульсный нагрев воды в закрытом контуре, если он будет включать отстойник-регенератор, где за счет охлаждение окружающей среды вода будет подзаряжаться напряженными молекулами.

Заключение

 1. Комплекс приведенных фактов, и приведенных обоснований этих фактов, хотя и на качественном уровне, убедительно свидетельствуют о существовании вытянутых, напряженных молекул воды, находящихся в квазиустойчивом состоянии.

2. Магнитная природа большинства якобы ковалентных связей не вызывает сомнений, тем более что легко может быть проверена экспериментально. Достаточно провести сравнительные измерения напряженности магнитного поля для постоянного магнита в вакууме (или в среде инертного газа) и в среде молекулярного водорода. Напряженность магнитного поля в среде водорода должна усиливаться. Коэффициент усиления должен зависеть обратно пропорционально от температуры водорода.

Профессионалы экспериментаторы предложат много других способов.
 
Нижний Новгород, июнь 2011г.

Контакт с автором: vleonovich@yandex.ru


Литература
1. Прохоров А.М. // Большая Советская Энциклопедия.
2. Кульский Л.А.,  Даль В.В.,  Ленчина Л.Г.// Вода знакомая и загадочная.
© Издательство "Радянська школа", 1982.
3. Каргаполов А.В., Зубарева Г.М. // Состояние воды в биологических системах. Интернет.
4. Привалов П.Л. // Биофизика 1968. т.13. № 1. с.163-177.
5. Канарёв Ф.М. // Вода – основной источник будущей энергетики. Интернет, http://kubagro.ru/science/prof.php?kanarev.
6. Мосин О.В. // Лёд – таинственный и необыкновенный. Интернет.   


Рецензии
Порадовало, что здесь все же дана верная трактовка водородной связи - как диполь-диполного взаимодействия. Теория водородной связи неплохо разработана, вопреки утверждениям.
Мне кажется, что нет нужды копаться в модельных представлениях о характере "движений" электронов в молекулах: там нет движения в общепринятом смысле, движущиеся ускоренно (а движение по криволинейным траекториям и есть ускоренное)заряды с неизбежностью должны терять энергию на излучение, в полном соответствии с классической электродинамикой.
Позабавило утверждение о том, что авторы патентов должны демонстрировать действующую модель: нет, не должны! Это только швейцарское патентное бюро, в котором работал Эйнштейн, предъявляло такие требования. А в Российском патентном фонде завуалированных вечных двигателей полным-полно, и ни один автор не представил действующий образец. Это постыдная, но реальная ситуация. К слову, еще больше дубликатов патентов, выданных на одни и те же изобретения разным авторам: патентный поиск не проводится вопреки требованиям закона, и за что получает Роспатент деньги и в чем состоит охрана авторского права - неведомо.
С любителями "импульсного электролиза" я сталкивался неоднократно. Все они, когда их прижмешь и говоришь о том, что их устройства не работают, ссылаются на недоработки чисто технического толка и говорят о том, что "Вот доработаем, и тогда...". Но воз и ныне там, вечного двигателя как не было, так и нет.

Алексей Степанов 5   20.06.2012 11:40     Заявить о нарушении
Уважаемый Алексей, извините за задержку с ответом, так получилось. Я, видимо, не четко сформулировал свою мысль о новом толковании водородной связи. Известно, что два шара могут сцепиться, если у них предусмотрены крючки, которые торчат всегда. Это представление традиционно переносится на атомы. В моей водородной связи, у свободного атома нет признаков этой связи. Необходимая связь возникает при сближении атомов, в начальный момент не за счет статистического взаимодействия.
Электрон не может не двигаться в атоме, а разрешено ему только круговое движение, т.к. при круговом движении заряд не излучает. Это подтверждено экспериментально.В этом месте Вы - жертва лженауки под крылом РАН. Попробуйте почитать, что-нибудь кроме учебников.
Ваш Владимир Леонович.

Владимир Леонович   16.10.2012 20:02   Заявить о нарушении
Уважаемый Владимир,
Квантовая механика построена на таком колоссальном массиве материала, что сомневаться в правоте ее положений так же странно, как, скажем, сомневаться в справедливости законов Ньютона при малых скоростях. Сейчас любому студенту доступны программы, позволяющие прогнозировать строение сложнейших молекул органических соединений, и все эти программы работают на основе численного решения уравнения Шредингера. Квантовая механика сделала столько предсказаний, противоречащих, казалось бы, здравому смыслу, но, тем не менее, подтвержденных опытом, что не верить в ее верность очень трудно. Именно квантовая механика (которая очень не нравилась Эйнштейну) позволила решить вопрос о теплоемкости реальных газов, об электропроводности полупроводников и т.д. Что касается кинетики химических реакций, в т.ч. молизации атомарного водорода, то стоит почитать, скажем, учебник химической кинетики Эмануэля и Кнорре - там все описано совершенно внятно.
Ваши построения, безусловно, остроумны и требуют недюжинной фантазии и труда - но они суть теории ad hoc, не позволяющие обнаружить универсальные связи в устройстве материи, как это делает квантовая механика. Попробуйте объяснить дифракцию электронов на щели, не прибегая к квантовой механике, или же объясните фотоэффект, или откуда берется уравнение Планка для черного тела, как возникают дискретные спектры атомов, почему у углерода то тетраэдрически направленные связи, то - углеродный скелет (в непредельных цепях) линеен; и почему картина рассеяния электронов (и нейтронов) на кристаллах в принципе идентична картине рассеяния рентгеновских лучей, т.е. связана с волновыми свойствами электронов и нейтронов; и каков смысл соотношения неопределенностей Гейзенберга. Это - лишь маленькая часть вопросов, которые К.М. освещает количественно и с единых позиций - да вы и сами наверняка все это знаете. так что я с большим сомнением отношусь к тому, что вы пишите, уж не обессудьте.

Алексей Степанов 5   17.10.2012 00:07   Заявить о нарушении
Уважаемый Алексей. Вам невозможно возразить, все правильно, кроме Вашего отношения ко всму сказанному. Есть такая наука, сопрмат, её и теорией-то не назовешь. Она все объясняет и всё правильно (но с некоторой погрешностью) предсказывает. Совсем как КМ. И кто же будет опровергать сопрамат, а тем более КМ, кладезь знаний (в буквальном смысле).
Владимир Леонович.

Владимир Леонович   18.10.2012 20:00   Заявить о нарушении
Уважаемый Владимир Леонович! Нет смысла вступать в полемику с людьми купающимися в парадигме Боровской (планетарной)теории строения вещества. Если посмотреть на подаваемый Вами с позиции химии 2-го порядка разработанной нашим соотечественником Б.В.Болотовым, то всё становится на свои места.
С уважением,
С.А.Коченков

Сергей Коченков   10.03.2014 21:55   Заявить о нарушении